International Journal of Agricultural Research and Review: ISSN-2360-7971, Vol. 5(6): pp 644-646, June, 2017. Copyright © 2017, Spring Journals

Short Communication

Suggested method for evaluation of agarwood oil quality

Associate Professor Dinh xuan Ba

Director of SECOIN Applied Biology Center (SECOIN ABC) No.9 D2, 92 Nguyen Huu Canh street, Ward 22, Binh Thanh district, 717000 HCMc, Vietnam

59 Hang Chuoi street, Hai Ba Trung district, Hanoi, Vietnam Tel: 84-4-39718899; 84-8-73010909; Mobile: 84-913207676

Author's E-mail: dxb@secoin.vn; secoinbio@gmail.com

Accepted 21st June, 2017.

After making GC-MS analysis on Agarwood essential oil (obtained from hydrodistillation) we have data of volatile organic compounds (while non-volatile and semi-volatile compounds, phenylethyl chromones for instance, obtained from Solvent extraction and TLC analysis). From volatile organic compounds said above we pay attention to the so-called *Key compounds* and *Dominant compounds* which are defined as follows: **Key compound** (KC for short) is the term that includes:

- Sesquiterpenes (having a common molecular formula C₁₅H₂₄)
- Sesquiterpenoids (having a common molecular formula C₁₅H₂₄O)
- Sesquiterpene alcohols (having a common molecular formula C₁₅H₂₆O)

in which Sesquiterpenoids and Sesquiterpene alcohols are called **Dominant compound** (DC for short).

Practical experiences: The higher content of dominant compound the better aromatic scent and therapeutic effects $^{(1)}(2)(3)(4)$ **Definition of** Σ , α and β :

A suggested method for evaluation of agarwood essential oil quality:

An agarwood essential oil is evaluated in good quality if $\alpha \ge 5.25$ (or $\beta \ge 0.84$) on condition that:

- ∑ ≥ 65%
- Total content of all GCMS identified compounds ≥ 70%
- Total content of all other aromatic ketones (Benzylacetone for example) ≥ 3%
- Total content of all fatty acids/aldehydes ≤ 15%
- No allergen
- No toxin

Examples of quality evaluation for 11 agarwood essential oils

Oil name		Content of key compounds					Aromatic compounds		Fatty acid &	Other	Aller	Toxin	Total	Price (USD/
On name		C ₁₅ H ₂₄	C ₁₅ H ₂₄ O	C ₁₅ H ₂₆ O	$\Sigma^{(\star)}$	α ^(*)	Benzy Dibenz	Other	deriv	comp -ound	-gen	IOXIII	Total	liter)
Grade	Compound quantity	4	6	5	15	3.8012	2	0	0	6	0	0	23	N/A
A ₂₀₁₅	Total content (%)	16.65	15.53	47.76	79.94		7.18	0	0	11.71	0	0	98.83	
Grade	Compound quantity	3	6	4	13	5.7981	2	0	0	8	0	0	23	15000
S ₂₀₁₅	Total content (%)	11.84	15.06	53.59	80.49		7.43	0	0	12.08	0	0	100	
Sample	Compound quantity	4	5	4	13	6.1765	2	2	3	2	0	0	22	12000
A ₂₀₁₇	Total content (%)	6.46	21.12	18.78	46.36		3.02	10.51	14.31	9.68	0	0	83.88	
Grade	Compound quantity	4	7	4	15	8.9519	1	0	1	1	0	0	18	15000
S ₂₀₁₇	Total content (%)	6.65	38.62	20.91	66.18		1.06	0	4.08	0.75	0	0	72.07	
Grade	Compound quantity	4	7	3	14	6.0550	2	0	4	2	0	0	22	12000
A ₂₀₁₇	Total content (%)	6.54	23.18	16.42	46.14		2.84	0	8.56	4.44	0	0	61.98	
Mala	Compound quantity	10	19	8	37	5.7608	1	0	0	1	0	0	39	8500
	Total content (%)	11.62	46.42	20.52	78.56		0.96	0	0	5.15	0	0	84.67	
Cvh5	Compound quantity	2	4	1	7	0.7466	1	0	2	5	0	0	15	8000
	Total content (%)	43.96	25.48	7.34	76.78		7.79	0	11.55	3.55	0	0	99.67	
100	Compound quantity	6	3	1	10	0.1117	0	0	0	6	0	1	17	N/A
	Total content (%)	77.42	8.09	0.56	86.07		0	0	0	12.05	0	1.88	100	
CAi1	Compound quantity	10	6	1	17	0.5652	1	0	2	2	0	0	22	N/A
	Total content (%)	55.08	29.63	1.5	86.21		2.21	0	5.79	3.93	0	0	98.14	
Cvb5	Compound quantity	7	5	1	13	1.2622	1	0	0	4	0	0	18	9400
	Total content (%)	38.40	39.36	9.11	86.87		3.84	0	0	9.27	0	0	99.98	
BNF3	Compound quantity	5	12	1	18	1.4237	0	0	5	6	0	0	29	5000
	Total content (%)	23.06	30.32	2.51	55.89		0	0	29.16	14.03	0	0	99.08	

646. Int. J. Agric. Res. Rev.

REFERENCES:

- 1. Natural Sesquiterpenoids as Cytotoxic Anticancer Agents.

 https://www.researchgate.net/publication/221850136 Natural Sesquiterpenoids as Cytotoxic Anticancer Agents
- 2. A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21(5), 529; http://www.mdpi.com/1420-3049/21/5/529/htm
- 3. Sesquiterpenoids Lactones: Benefits to Plants and People. Int J Mol Sci. 2013 Jun; 14(6): 12780–12805. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709812/
- 4. Inhibitory effect of sesquiterpene lactones and the sesquiterpene alcohol. Eur J Pharmacol. 2015 Dec 15;769:195-202. https://www.ncbi.nlm.nih.gov/pubmed/26593432

.