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Abstract: Enhancing the dimensional accuracy of thick materials is crucial in manufacturing processes, directly 
impacting the quality and performance of the final products. This study investigates the optimization of machining 
parameters to maximize the rigidity index, a key factor in maintaining dimensional stability. Utilizing Response Surface 
Methodology (RSM) and Artificial Neural Networks (ANN), this research aims to predict and optimize the rigidity index, 
thereby improving precision in machining thick materials. The methodology involves designing experiments using a 
central composite design matrix. Statistical tools were employed to analyze the data, and the quadratic model was 
identified as the best fit for predicting rigidity index. Results indicate that optimizing parameters such as depth of cut, 
cutting speed, and feed rate significantly enhances the rigidity index, leading to improved dimensional accuracy. 
Experimental validation and predictive modeling demonstrate that both RSM and ANN are effective in optimizing 
machining parameters. The study provides a robust framework for manufacturers to achieve higher precision and 
efficiency in processing thick materials, contributing valuable insights into the optimization of rigidity index for enhanced 
manufacturing outcomes. 
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1. INTRODUCTION 
 
      Dimensional accuracy in manufacturing processes 
involving thick materials is significantly influenced by the 
rigidity index. A higher rigidity index typically correlates 
with improved dimensional stability and accuracy. 
Dimensional accuracy is a cornerstone of manufacturing 
quality, ensuring that components fit together seamlessly 
and function as intended. Achieving precise dimensions 
is especially challenging when working with thick 
materials, as these often undergo significant deformation 
during processing. One key factor that can influence 
dimensional accuracy is the rigidity of the material being 
processed. Dimensional accuracy is critical for ensuring 
the functionality and reliability of manufactured 
components. According to Chatterjee et al. (2019), 
inaccuracies in dimensions can lead to issues such as 
poor fit, increased wear, and potential failure of 
components. In the context of thick materials, 
maintaining dimensional accuracy is particularly 
challenging due to the inherent material properties and 
the significant forces involved in their processing (Smith  

 
 
 
et al., 2021). Rigidity, defined as the material's resistance 
to deformation under applied forces, plays a crucial role 
in maintaining dimensional stability. The rigidity index of 
a material is a quantifiable measure that can be 
optimized to enhance the precision of manufacturing 
processes. By accurately predicting and optimizing the 
rigidity index, manufacturers can minimize deviations 
from desired dimensions, thus improving the overall 
quality and performance of the final product. This is 
particularly important in industries such as aerospace, 
automotive, and heavy machinery, where stringent 
dimensional tolerances are required. Rigidity, or 
stiffness, of a material is a crucial factor that affects its 
deformation under applied forces. A higher rigidity index 
indicates a material's greater resistance to deformation, 
which is beneficial for maintaining dimensional stability 
during manufacturing processes. Lee and Sahu (2018) 
highlighted the importance of material rigidity in 
achieving precise dimensions, especially when dealing 
with thick materials that are prone to warping and  
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deformation during machining or forming. Predictive 
modeling techniques have been extensively used to 
estimate the rigidity index and its impact on dimensional 
accuracy. Machine learning algorithms, such as neural 
networks and support vector machines, have shown 
promise in accurately predicting material behavior based 
on various input parameters (Zhang et al., 2019). These 
models consider factors such as material properties, 
processing conditions, and geometric configurations to 
provide reliable predictions. Optimization methods, 
including genetic algorithms and particle swarm 
optimization, have been employed to determine the 
optimal rigidity index that minimizes dimensional 
deviations. Yadav et al. (2022) demonstrated the 
effectiveness of these techniques in optimizing material 
properties to enhance manufacturing precision. In the 
context of thick materials, optimizing the rigidity index 
can help in balancing the material's resistance to 
deformation with the need for efficient processing. 
Numerous studies have explored the application of 
rigidity optimization in various manufacturing contexts. 
For example, Kim et al. (2021) investigated the 
optimization of rigidity in the machining of titanium alloys 
for aerospace components, finding significant 
improvements in dimensional accuracy. Similarly, Gupta 
et al. (2023) examined the benefits of optimizing material 
rigidity in the precision forging of automotive parts, 
demonstrating enhanced dimensional stability and 
reduced defect rates. Meiabadi, Moradi, and 
Karamimoghadam (2021) explored the use of artificial 
neural networks in predicting the producibility of 3D 
printed parts made from polylactic acid. Their study 
demonstrated that an accurate model could predict 
toughness and dimensional accuracy, suggesting 
optimized settings for enhanced producibility (Meiabadi, 
Moradi, & Karamimoghadam, 2021). Their research 
underscores the potential of machine learning in fine-
tuning manufacturing parameters to improve material 
rigidity and accuracy. Glaesener et al. (2023) 
investigated the impact of geometric imperfections on the 
mechanical response of 2D and 3D trusses. Their 
findings indicate that addressing imperfections can 
significantly enhance rigidity and dimensional accuracy 
(Glaesener et al., 2023). Vidakis et al. (2022) focused on 
the effects of nozzle temperature, layer thickness, and 
infill density on surface roughness and dimensional 
accuracy in 3D printing. Their prediction models and 
optimization techniques demonstrated substantial 
improvements in accuracy (Vidakis et al., 2022). The 
research highlights the intricate relationship between 
processing parameters and material properties. Also, 
Forés-Garriga, Gómez-Gras, and Pérez (2023) 
conducted an experimental and numerical analysis on 
additively manufactured cellular solids. They found that 
optimized microarchitectures enhance rigidity and 
dimensional accuracy (Forés-Garriga, Gómez-Gras, & 
Pérez, 2023). Their study provides insights into the 
design considerations necessary for achieving high-
performance materials. Sun and Lian (2018) analyzed 

the stiffness and mass optimization of parallel kinematic 
machines, focusing on improving accuracy and rigidity 
through dimensional adjustments (Sun & Lian, 2018). 
Their findings contribute to the broader understanding of 
mechanical optimization in precision machinery. 
      The reviewed studies collectively underscore the 
importance of optimizing the rigidity index to achieve high 
dimensional accuracy in thick materials. The 
methodologies employed range from artificial intelligence 
to experimental validation, each offering unique 
advantages in specific contexts. Machine learning 
models, such as artificial neural networks, have shown 
significant promise in predicting and optimizing material 
properties. Meanwhile, numerical and experimental 
approaches provide robust validation and insights into 
the underlying mechanics of material behavior. 
Optimizing the rigidity index is crucial for enhancing the 
dimensional accuracy of thick materials. Advances in 
artificial intelligence, numerical analysis, and 
experimental methodologies have provided substantial 
progress in this field. Future research should continue to 
integrate these approaches, focusing on developing 
more precise and efficient optimization techniques. 
 
 
2. METHODOLOGY 
 
      A central composite design matrix will be employed 
for the experiment and a design expert software wil be 
used considering a widely established machining 
parameters The response surface methodology will be 
employed to optimize this target response The RSM 
methodology was selected because of its robustness to 
handle multi response parameters. 
 
 
2.1 Design of experiment 
 
      DOE refers to planning, designing and conducting an 
experiment. To achieve this an appropriate combination 
of the experimental parameters is required. One of the 
conventional common approaches utilized by many 
engineers in manufacturing companies is one-variable-
at-a-time (OVAT), where the engineer varies one 
variable at a time keeping all other variables involved in 
the experiment fixed. This approach required large 
resources to obtain a limited amount of information about 
the process. OVAT experiments are often unreliable, 
time consuming, may not yield the optimal condition and 
do not address the interaction effect between the 
process variables. Methods that have statistical bases 
can replace OVAT experimental approach.  The most 
popular Response Surface Methodology design is CCD. 
CCD has three groups of design points: (a) two-level 
factorial or fractional factorial design points, (b) axial 
points (sometimes called star points) and (c) centre 
points. CCD's are designed to estimate the coefficients 
of a quadratic model. All point descriptions will be in 
terms of coded values of the factors  
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2.2 Models employed 
 
      In the present study two expert systems were 
employed in the modeling, optimization and prediction 
which are RSM and ANN. 
 
 
2.2.1 Response Surface Methodology 
 
      RSM are used to develop empirical models, 
commonly called response surface, for the response of a 
process in terms of the relevant controllable factors. 
RSM determines the operating conditions that produce 
the optimum response. Response Surface Methodology 
allows you to specify and fit a model up to the second 
order, RSM fits a model and provides the ANOVA and 
the 'Lack of Fit' test separately when there is more than 
one response. Contour and Surface plots of each 
response for pairs of factors are also produced.  
 
 
2.2.2   Artificial Neural Networks  
 
      Neural network are data mining tool for finding 
unknown patterns in databases, a neural network is a 
massively parallel distributed processor that has a 
natural propensity for storing experimental knowledge 
and making it available for use. It resembles the brain in 

two respects. Knowledge is acquired by the network 
through a learning process, Interneuron connection 
strengths known as synaptic weights are used to store 
the knowledge.An elementary neuron with R input is 
weighted with an appropriate w. The sum of the weighted 
inputs and the bias forms the input to the transfer function 
f. Neurons can use any differentiable transfer function f 
to generate their output. Multilayer networks often use 
the log-sigmoid transfer function logsig. The function 
logsig generates outputs between 0 and 1 as the 
neuron's net input goes from negative to positive infinity. 
Alternatively, multilayer networks can use the tan-
sigmoid transfer function tansig. Sigmoid output neurons 
are often used for pattern recognition problems, while 
linear output neurons are used for function fitting 
problems.  
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Modeling and Optimization using RSM 
 
      Response Surface Model is a variation of the simple 
linear regression, with the incorporation of the second 
order effects of non-linear relationships. It is a popular 
optimization technique to determine the best possible 
combinations of variables to determine a specific 
response to a phenomenon

.  
 
Table 1: Experimental Results 
 

 Depth of  Cutting 
speed 

Feed rate Rigidity 
index 

1 165.00 17.50 11.50 0.55 
2 150.00 16.00 10.00 0.85 
3 165.00 17.50 14.02 0.59 
4 165.00 20.02 11.50 0.56 
5 165.00 17.50 11.50 0.55 
6 180.00 19.00 13.00 0.67 
7 150.00 19.00 10.00 0.67 
8 180.00 16.00 13.00 0.52 
9 180.00 16.00 10.00 0.52 
10 190.23 17.50 11.50 0.46 
11 139.77 17.50 11.50 0.51 
12 165.00 17.50 11.50 0.55 
13 180.00 19.00 10.00 0.67 
14 150.00 19.00 13.00 0.44 
15 165.00 14.98 11.50 0.55 
16 165.00 17.50 8.98 0.88 
17 165.00 17.50 11.50 0.46 
18 165.00 17.50 11.50 0.5 
19 165.00 17.50 11.50 0.5 
20 150.00 16.00 13.00 0.48 

 
      To validate the suitability of the quadratic model in 
analyzing the experimental data, the sequential model 

sum of squares was calculated for rigidity index  
response as presented in Table  2. 
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             Table  2: Sequential Model Sum of Square for  Rigidity Index 
 

 Sum of  Mean F p-value  
Source Squares df Square Value Prob > F  

Mean vs Total 6.59 1 6.59    
Linear vs Mean 0.089 3 0.030 2.56 0.0913  
2FI vs Linear 0.081 3 0.027 3.39 0.0507  
Quadratic vs 2FI 0.093 3 0.031 29.86 < 0.0001 Suggested 
Cubic vs 
Quadratic 

3.210E-003 4 8.026 x 10-4 0.67 0.6376 Aliased 

Residual 7.214E-003 6 1.20210-4    

 
 
      The sequential model sum of squares table shows 
the accumulating improvement in the model fit as terms 
are added. Based on the calculated sequential model 
sum of square, the highest order polynomial where the 
additional terms are significant and the model is not 
aliased was selected as the best fit. To test how well the 

quadratic model can explain the underlying variation 
associated with the experimental data, the lack of fit test 
was estimated for each of the responses. Model with 
significant lack of fit cannot be employed for prediction.  
The model statistics computed for rigidity index response 
based on the model sources is presented in Table 3. 

 
 
           Table 3: Model Summary Statistics for  Rigidity Index 
 

 Std.  Adjusted Predicted   
Source Dev. R-Squared R-Squared R-Squared PRESS  

Linear 0.11 0.3244 0.1977 -0.1790 0.32  
2FI 0.089 0.6210 0.4461 0.1727 0.23  
Quadratic 0.032 0.9619 0.9277 0.8561 0.039 Suggested 
Cubic 0.035 0.9737 0.9166 0.8580 0.039 Aliased 

 
 
      The summary statistics of model fit shows the 
standard deviation, the r-squared, adjusted r-squared, 
predicted r-squared and predicted error sum of square 
(PRESS) statistic for each complete model. Low 
standard deviation, R-Squared near one and relatively 
low PRESS is the optimum criteria for defining the best 
model source. Based on the results,the quadratic 

polynomial model was suggested while the cubic 
polynomial model was aliased hence, the quadratic 
polynomial model was selected for this analysis. To 
detect the presence of mega patterns or expanding 
variance a plot of residuals and the predicted was 
produced for rigidity index is shown in the Figure 1. 

 
 

 
 
Figure 1: Plot of Residuals against Predicted for Rigidity Index 
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      In order to detect a value or group of values that are 
not easily detected by the model, the predicted values 

are plotted against the actual values, for rigidity index 
which is shown in Figure 2. 

 
 

 
 
                                     Figure 2: Plot of Predicted Vs Actual for Rigidity Index 
 
 
      To determine the presence of a possible outlier in the 
experimental data, the cook’s distance plot was 
generated for the different responses. The cook’s 
distance is a measure of how much the regression would 
change if the outlier is omitted from the analysis. A point 
that has a very high distance value relative to the other 
points may be an outlier and should be investigated.  
 
 
3.2 Artificial Neural Network (ANN) Model 
 
      The same data used for the RSM analysis was used 
for theANN, the configuration interphase for neural 
network, where all parameters were set and the feed 
forward backpropagation was chosen amongst other 
network type to yield the best results depth of cut, cutting 

speed and feed rate  information provided. It is 
recommended that a set of data be set aside for 
validation and testing, therefore, that data obtained form 
this research were divided into three parts with 70% of 
the experimental sample data, used for training 15% 
used for validation, while the remaining 15% was used to 
test the neural network model. This resulted in 20 
samples of the entire date used for training while 5 
samples each was employed for validation and testing. 
The ANN network architecture for the rigidity index has 3 
input, 10 neurons in the hidden layer and 1 neuron in the 
output layer, the network architecture. The best 
prediction for the rigidity index responses was achieved 
at epoch 2, although, a total of 6 epochs were used in the 
iteration process.the performance curve for rigidity index 
is presented in Figure 3. 
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                    Figure 3: Performance Curve for Trained Network to Predicting Rigidity Index 
 
      A gradient function diagram which shows the 
momentum gain and optimal epoch value of the network 

epoch is produced. Figure 4 shows the gradient function 
plot. 

 
 

 
 
                 Figure 4: gradient plot for predicting rigidity index 
 
 
      A regression plot is produced to check for the 
correlation between the network output and the observed 
values. The dotted diagonal line on each plot indicates 

the line of best fit which indicate a perfect prediction and 
a correlation of 1. The regression plot is shown in Figure 
5. 
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                           Figure 5: Regression plot for rigidity index 
 
       The network output has been able to produce predictions for the rigidity index which is shown in Table 4 
 
              Table 4: rigidity index prediction 
 

 Input Parameters Rigidity index 

Depth of 
cut 

cutting 
speed 

Feed rate EXP ANN Error 

1 165.00 17.50 11.50 0.85 0.87 -0.02 
2 150.00 16.00 10.00 0.52 0.64 -0.12 
3 165.00 17.50 14.02 0.67 0.63 0.04 
4 165.00 20.02 11.50 0.67 0.65 0.02 
5 165.00 17.50 11.50 0.48 0.55 -0.07 
6 180.00 19.00 13.00 0.52 0.5 0.02 
7 150.00 19.00 10.00 0.44 0.52 -0.08 
8 180.00 16.00 13.00 0.67 0.64 0.03 
9 180.00 16.00 10.00 0.51 0.61 -0.1 
10 190.23 17.50 11.50 0.46 0.43 0.03 
11 139.77 17.50 11.50 0.55 0.65 -0.1 
12 165.00 17.50 11.50 0.56 0.7 -0.14 
13 180.00 19.00 10.00 0.88 0.84 0.04 
14 150.00 19.00 13.00 0.59 0.6 -0.01 
15 165.00 14.98 11.50 0.55 0.52 0.03 
16 165.00 17.50 8.98 0.46 0.51 -0.05 
17 165.00 17.50 11.50 0.5 0.55 -0.05 
18 165.00 17.50 11.50 0.5 0.47 0.03 
19 165.00 17.50 11.50 0.55 0.6 -0.05 
20 150.00 16.00 13.00 0.55 0.62 -0.07 

 
 
4. CONCLUSION 
 
In this study a scientific approach was employed to 
understudy machining parameters required to enhance 
dimensional accuracy of thick materials using robust 
techniques such as response surface methodology  

 
(RSM) and artificial neural network (ANN). A cause and 
effect relationship between the process parameters has 
been established. The experimental procedure was well 
planned and optimal results was obtained with 
reasonable statistical significance. 
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