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Abstract:  The importance of welding quality in metal production cannot be overstated because it improves the durability, 
toughness, and strength of engineering structures. The assessment of weld quality involves various parameters. 
Traditional methods such as welder expertise, charts, and handbooks have been used to determine desired welding 
parameters, offering simplicity and cost-effectiveness. However, relying solely on these methods doesn't guarantee 
satisfactory welding outcomes, especially in new welding processes. To address this challenge, the study aims to utilize 
artificial intelligence models for parameter optimization. The mild steel plate was chosen as the research material due to 
its availability. An optimal experimental design was carried out using design software. Gas tungsten arc welding was 
employed to create weld samples, with input factors; gas flow rate, voltage, and current. The desired outputs were the 
weld strength factor, weld factor of safety, and weld quality index. Both the response surface methodology (RSM) and 
artificial neural network (ANN) models were utilized to generate optimal solutions for controlling and predicting 
experimental responses. The RSM model was developed, tested, and validated, demonstrating high strength and 
accuracy in maximizing weld strength, quality index, and weld factor of safety. Similarly, the ANN model provided close 
correlations with experimental results, enhancing prediction capabilities. 
 
Keywords: Design of experiment, Response Surface Methodology (RSM), Artificial Neural Network (ANN), weld 
strength factor. 

 

                                 
  

 
INTRODUCTION 
 
          When the right pressure, temperature, and 
metallurgical conditions are chosen during the welding 
process, two materials are permanently linked together 
through localized cohesion [1]. For combining copper-
gold in the jewelry industry, welding has been used for a 
very long time [2]. Welding had already begun to develop 
quickly by the time electricity was widely available in the 
19th century, and it was being used to combine metals. 
The terms "welding" and "brazing" are interchangeable 
when referring to the joining of autogenous metals [3]. 
Since the properties of the molten material related to fluid 
flow play a significant part in the procedure, the majority 
of researchers in the field explored the keyhole collapse  

 
 
events from a hydrodynamic point of view. Shifting the 
nozzle farther from the welding zone will, however, 
remove the fusion zone protection that shielding gases 
typically offer [4].  The biggest disadvantage of 
mechanical cleaning techniques like scraping and using a 
steel brush is that they severely degrade the parent 
material's surface and leave behind visible grooves and 
scratches that could affect how the weld bead will 
ultimately look [7]. These methods are also extremely 
operator-dependent in terms of cleaning evaluation and 
repeatability, making them difficult to manage. 
Engineering complicated issues and processes can be 
understood effectively via numerical modeling, according  
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to research [8]. In order to simulate engineering 
processes numerically, physical behavior must be 
expressed as mathematical relations that computers can 
analyze and solve in order to model the specific problem 
[9]. Modeling is typically utilized when experimental or 
analytical methods fall short of providing a thorough 
picture of the subject under study or when time-
consuming, expensive, and dangerous laboratory work is 
involved [10]. It is challenging to evaluate the impact of 
the filler wire composition on porosity formation in the 
welds when different materials with different chemical 
compositions are joined together using filler wires that 
have a varied chemical composition [11]. The molten weld 
pool is shielded from the air in some way during every 
step of the arc welding process. Due to its high melting 
efficiency, quick production rates, simple automation, and 
low operator skill requirements, the submerged arc 
welding technique is frequently chosen. [12]-[14] The 
weld's bead geometry, which is influenced by the process 
factors, determines the weld's quality.  
 
 
2. METHODOLOGY 
 
2.1 Design of experiment 
 
          Utilizing the Design of Experiments (DOE) 
technique proves to be a robust analytical tool for 
modelling and comprehensively assessing the impact of 
multiple controlling factors on performance outcomes. 
DOE encompasses the meticulous planning, designing, 
and analysis of experiments to derive valid and unbiased 
conclusions in an effective and efficient manner. When 
numerous variables exert an influence on a specific 
quality aspect of a product, also known as the response, 
the most effective strategy is to structure an experiment 
to yield valid, dependable, and well-founded findings 
while optimizing resource utilization. It is vital to recognize 
that certain factors may exert potent impacts on the 
response, some may induce moderate effects, and a few 
may have negligible influence. In the realm of 

manufacturing, experiments are conducted to enhance 
comprehension and insight into various engineering 
processes, ultimately aiming to produce superior-quality 
goods. This endeavour necessitates the skilful 
amalgamation of experimental parameters. One 
prevalent conventional approach adopted by 
manufacturing engineers is the one-variable-at-a-time 
(OVAT) method, wherein a single variable is adjusted 
while holding all other experiment variables constant. This 
approach demands considerable resources for a limited 
information gain about the process. OVAT experiments 
often prove to be unreliable, time-intensive, fail to attain 
optimal conditions, and disregard the interaction effects 
among process variables. Statistical-based 
methodologies can effectively supplant the OVAT 
approach, providing more robust alternatives for 
experimental design. 
  
2.2 Central composite design (CCD)  
 
          One of the widely adopted designs within the 
domain of Response Surface Methodology is the Central 
Composite Design (CCD). CCD encompasses three 
distinct sets of design points, containing (a) axial points, 
(b) factorial designs with two levels or fractional factorial 
designs —also referred to as star points—and (c) central 
points. This particular design is meticulously tailored for 
the estimation of quadratic model coefficients. It is 
important to note that all descriptions of these points will 
be expressed in terms of coded values corresponding to 
the factors.  
 
 2.3 Factors required for design of experiment 
    
          During experimentation, certain crucial elements 
need to be taken into account to ensure the attainment of 
dependable and precise experimental outcomes. These 
elements are known as process parameters. Process 
parameters are further categorized into input parameters 
and output parameters. The input parameters pertinent to 
this research investigation are presented in Table 1. 

 

                                     Table 1: Input parameters 
 

Parameters Unit Symbol Coded valueLow(-1) Coded value High(+1) 

Current Amp A 180 240 
Gas flow rate Lit/min F 16 22 
Voltage Volt V 18 24 

 
 
 
2.4 Recording of responses 
 
           A mild steel plate with a thickness of 10 mm was 
chosen as the experiment's raw materials. Using a power 
hacksaw, the mild steel plate was divided into 60 mm by 
40 mm sections, and the edges were then smoothed out 

by grinding to prepare the surfaces for fusion. The 
coupons' surfaces were further refined utilizing emery 
paper. Following this, the mild steel plates were securely 
affixed to the worktable using a versatile clamp to facilitate 
the welding of the specimen joints. To conduct the 
experiments, a Tungsten Inert Gas (TIG) welding process  
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employing Alternate Current (AC) was employed. This 
welding technique was selected due to its ability to 
concentrate heat within the welding area. Shielding gas in 
the form of 100% argon gas was used. Each experimental 
run involved the use of five specimens, and the average 
of the readings from these five experimental runs was 
documented for each of the 20 total runs. 
 
 
2.5 Response Surface Methodology (RSM)  
 
          Engineers frequently strive to identify the 
conditions that would yield the most efficient outcome in 
a given process. Put differently, they seek to ascertain the 
values of process input parameters that lead to the 
optimal levels of responses. This optimal state could 
entail either minimizing or maximizing a specific function 
in relation to these input parameters. Among the current 
arsenal of optimization techniques used to elucidate 
welding process performance and determine the optimal 
outcomes of interest, Response Surface Methodology 
(RSM) holds a prominent place. RSM encompasses a 
collection of mathematical and statistical approaches that 
prove valuable in both modelling and predicting 
responses influenced by multiple input variables, all with 
the ultimate aim of achieving optimization. Initially 
presented by Box and Wilson in 1951, RSM has found 
substantial application across industries for elucidating 
the interplay between response variables and several 
input factors, with the overarching goal of identifying 
optimal factor settings to enhance processes or products. 
This methodology shines particularly in scenarios 
featuring numerous input factors potentially influencing 
one or more response variables. RSM is, at its core, a 
synthesis of mathematical and statistical models applied 
to instances where a desired outcome is affected by a 
variety of variables. Its application is noteworthy in 
devising new products and refining existing designs. 
Regression analysis, optimization techniques, and 
experimental design are the core elements of the 
Response Surface Methodology. This combination is 
harnessed to explore the empirical relationship within the 
system. By leveraging Response Surface Methodology, 
empirical models—often referred to as response 
surfaces—are developed to capture the behaviour of a 
process's response in relation to relevant controllable 
factors. RSM facilitates the determination of operational 
conditions that yield the optimal response. This approach 
allows modelling up to the second order, providing 
ANOVA and 'Lack of Fit' tests independently when there 
is more than one response. Additionally, it generates 
contour and surface plots illustrating response behaviour 
for factor pairs. The overarching goals of response 
surface analysis are to facilitate comprehension of 
surface plot topography through intuitive 3D diagrams 
depicting maximum or minimum points, saddles, and 
ridges, and to pinpoint the optimal response region using 
contour plots. 
 

 
2.6   Artificial Neural Networks  
 
          A neural network functions as a data mining tool 
aimed at uncovering concealed patterns within 
databases. It operates as a highly parallel distributed 
processor, inherently adept at capturing experiential 
knowledge and rendering it accessible for application. Its 
resemblance to the human brain is two-fold. Through a 
process of learning, the network assimilates information, 
and the synaptic weights—the connections between 
neurons—serve as the memory for this information. A 
fundamental neuron, equipped with R inputs, is endowed 
with a suitable weight denoted as 'w.' The summation of 
these weighted inputs, combined with a bias factor, 
constitutes the input for the transfer function 'f.' Neurons 
can employ a diverse range of differentiable transfer 
functions, such as 'f,' to generate their output. In the 
context of multilayer networks, the log-sigmoid transfer 
function 'logsig' is commonly employed. This function 
produces outputs ranging as the net input, between 0 and 
1 of the neuron traverses between a negative and a 
positive infinity. As an alternative, multilayer networks can 
adopt the tan-sigmoid transfer function 'tansig.' Sigmoid 
output neurons are frequently employed for tasks 
involving pattern recognition, while linear output neurons 
find application in problems centered around function 
fitting. In essence, a neural network operates as a 
proficient instrument for unearthing latent patterns within 
data and harnessing its ability to learn and generalize 
from experiences, similar to certain attributes of the 
human brain. 
 
2.7 Feed forward Neural Network 
 
           In feedforward networks, it's common to find a 
hidden layer or layers consisting of sigmoid neurons, then 
comes a layer of output comprising linear neurons. 
Incorporating multiple layers of neurons featuring 
nonlinear transfer functions enables the network to 
comprehend intricate nonlinear connections of the 
vectors of the input and output. The utilization of a linear 
output layer is primarily favoured for addressing function 
fitting or nonlinear regression tasks. Conversely, when the 
intention is to restrict network outputs within a specific 
range (e.g., between 0 and 1), opting for a sigmoid 
transfer function for the output layer, such as "logsig," is 
advisable. This is particularly relevant in instances where 
the network is being employed for pattern recognition 
challenges, where the network's objective involves 
making decisions. In networks comprising multiple layers, 
the sequential numbering of the layers determines the 
exponent on the weight matrix.  
 
 
2.8 Multilayer Neural Network Architecture 
 
          This network possesses the capacity to serve as a  
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versatile function approximator, effectively estimating any 
function with a finite number of disruptions to a high 
degree of accuracy, provided there are ample neurons in 
the hidden layer. Having established the multilayer 
network's architecture, the ensuing sections delineate the 
process of design. Preliminary Steps for Multilayer Neural 
Network Data Preparation Prior to embarking on the 
network design journey, the initial step involves the 
collection and preparation of sample data. Because it is 
challenging to incorporate prior knowledge into neural 
networks, the quality of training data ultimately 
determines how accurate the network can be. It is of 
utmost significance that the data encompasses the entire 
spectrum of inputs relevant to the network's intended 
application. Multilayer networks exhibit proficient 
generalization capabilities within their training input 
range. However, their capacity to extrapolate accurately 
beyond this domain is limited. Hence, the training data 
must comprehensively span the complete input space 
range. Following data collection, two essential 
prerequisites must be fulfilled prior to utilizing the data for 
network training: data preprocessing and division into 
subsets. For optimal efficiency in neural network training, 
specific preprocessing operations are conducted on both 
the network inputs and targets. Sigmoid transfer functions 
are used in multilayer networks to typically deployed 
within the hidden layers. These functions approach 
saturation as the net input surpasses a certain threshold 
(approximately three, yielding exp(−3) ≅ 0.05). Instances 
of early saturation lead to minute gradients and sluggish 
network training. The net input in the first network layer is 
the result of multiplying the input by the weight and 
subsequently added to the bias. To prevent the transfer 
function from reaching saturation due to substantial input 
values, it's customary the inputs should be normalized 
first before their integration into the network. This 
normalization process is typically extended to the target 
and input vectors within the dataset. Consequently, the 
network output invariably conforms to a normalized range. 
Upon implementation of the network in practical 
scenarios, the network output can be reverse-engineered 

to the original target data units through a reverse 
normalization process. 
 
 
3.0 RESULTS 
 
          Artificial neural network (ANN) and response 
surface methodology (RSM) are two expert methods that 
were employed in this study to assess the data gathered 
from the tests conducted. 
 
3.1 Modeling and Optimization using Response 
Surface Methodology (RSM) 
 
          The second order results of non-linear relationships 
are included in the Response Surface Model, a 
modification on simple linear regression. Finding the ideal 
combinations of factors to determine a particular 
response to an event is a common optimization approach. 
Understanding the relationship between many predictor 
factors and several projected responses is very helpful 
when using RSM. 
          Maximizing the weld factor of safety was the 
optimization model's goal. The optimal input variable's 
value, specifically the current (Amp), voltage (V), and gas 
flow rate (lit/min), which will produce the best weld output 
outcomes, was determined as the process's final solution. 
          To produce the experimental information needed 
for the optimization process; 

i.An experiment's statistical design was carried out utilizing 
the central composite design method (CCD). A statistical 
tool was used to carry out the design and optimization. It 
was decided to use Design Expert 7.01 for this specific 
issue.  

ii.A 20-run experimental design matrix was created with 
eight (8) factorial points (2n), six (6) axial points (2n), and 
six (6) center points (k).  
          The sequential model sum of squares for the weld 
factor of safety response was determined to verify the 
quadratic model's adequacy for evaluating the 
experimental data, as shown in Table 2. 

 
 
        Table  2: Sequential model sum of square for  weld factor of safety 
 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  
Mean vs Total 198.03 1 198.03    
Linear vs Mean 0.24 3 0.080 0.72 0.5569  
2FI vs Linear 0.25 3 0.083 0.70 0.5711  
Quadratic vs 2FI 1.40 3 0.47 186.32 < 0.0001 Suggested 
Cubic vs Quadratic 0.018 4 4.508E-003 4.91 0.0554 Aliased 
Residual 4.587E-003 5 9.174E-004    

 
 
          The sum of squares table for the sequential model 
demonstrates how the model fit improves over time as 
terms are added. A polynomial of the highest order with a 

lot of extra terms and an unaliased model was chosen as 
the best fit based on the estimated sequential model sum 
of squares. The lack of fit test was estimated for each  
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response to assess how well the fundamental variation in 
the data from experiments can be described by the 
quadratic model. It is impossible to use a model for 
forecasting that has a considerable lack of fit. Table 3 

shows the results of the computation of the lack of fit for 
the weld factor of safety. 
 

 
 
Table  3: Lack of fit test for weld factor of safety 
 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  
Linear 1.67 11 0.15 211.32 < 0.0001  
2FI 1.42 8 0.18 247.33 < 0.0001  
Quadratic 0.020 5 3.948E-003 5.48 0.0621 Suggested 
Cubic 1.707E-003 1 1.707E-003 2.37 0.1985 Aliased 
Pure Error 2.880E-003 4 7.200E-004    

 
 
          The cubic polynomial had a substantial lack of fit 
and was therefore aliased to model analysis, but the 
quadratic polynomial had a non-significant lack of fit and 

was indicated for model analysis. The calculated model 
statistics for the weld factor of safety response based on 
the model sources is shown in table 4

. 
          Table   4: Model summary statistics for  weld factor of safety 
 

 Std.  Adjusted Predicted   

Source Dev. R-Squared R-Squared R-Squared PRESS  
Linear 0.33 0.1255 -0.0494 -0.5380 2.95  
2FI 0.34 0.2554 -0.1169 -0.4981 2.87  
Quadratic 0.050 0.9882 0.9764 0.9195 0.15 Suggested 
Cubic 0.030 0.9976 0.9914 0.8013 0.38 Aliased 

 
          To validate the adequacy of the quadratic model 
the goodness of fit figures depicted in table 5 are 
according  

to its capacity to enhance the weld factor of safety

. 
 
           Table 5:Goodness of fit statistics for weld factor of safety 
 

Std. Dev. 0.050 R-Squared 0.9882 

Mean 3.23 Adj R-Squared 0.9764 
C.V. % 1.55 Pred R-Squared 0.9195 
PRESS 0.15 Adeq Precision 32.459 

 
 
          Any model's acceptability must first be verified by 
the results of an acceptable statistical analysis.  
The projected comparing values against the actual values 
for the weld factor of safety, as illustrated in figure 1a, so 
as to recognize a value or set of values that the model has 
difficulty identifying. The cook's distance plot was created 
for each response in order to identify any potential outliers 
in the experimental data. When an outlier is removed from  
 
 
 
 
 
 
 

 
the analysis, how much the regression would change is 
determined on the cook's distance. A point that stands out 
from the others by having an extremely high distance 
value should be looked into. Figure 1b shows the 
generated cook's distance for the weld strength 
component. 
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          The 3D surface plots in Figure 2a and 2b were 
created to examine the influence of many input variables 
on the weld  

factor of safety generated as follows

. 
 
 

    
  
 
 
 
 
 
 
Weld factor of safety analysis 
 
          It is recommended that a set of data be set aside 
for validation and testing, therefore, that data obtained  

 
 
from this research were broken into three segments with 
70% of the experimental sample data, used for training  

Research Papers                                                                   31.  Iyoha  et al.  

Figure 1a: Plot of Predicted Vs Actual for weld 

factor of safety 
Figure 1b:  cook’s distance  plot for weld 

factor of safety. 

 

Figure 2a: Effect of current and voltage 

on weld factor of safety 
Figure 2b: Effect of current and gas flow 

rate on weld factor of safety 



 
 
 
 
15% used for validation, while the remaining 15% was 
used to test the neural network model the diagram of 
partitions. The ANN network architecture has 3 inputs, 

figure 3 depicts the safety weld factor of the network 
topology, which has ten hidden layer neurons and one 
output layer neuron. 

 
 

 
 
           Figure 3: Artificial neural network architecture for predicting weld factor of sfety 
 
          
          The Training interphase for the weld factor of safety 
network, it was noticed that the training of the network 
model provided a correlation having 99.9% with a mean 
square error of 3.246E-4. The validation of the network 
model produced a correlation of 98.7% with a mean 
square error of 3.679E-2. the testing of the network model 
produced a correlation of 77.3% with mean square error 
1.985E-1.  
          The performance plot for weld factor of safety was 
produced to check for network learning. Epoch 3 yielded 

the best validation performance which is shown in figure 
4a. A gradient function plot is produced for the weld factor 
of safety network. it displays how many epochs were 
employed as part of the training procedure. 1 epoch 
denotes one full algorithm training cycle. There were 5 
epochs used, and figure 4a demonstrates that the best 
forecast was made at the third epoch. The gradient 
function diagram is presented in figure 4b. 

 
 

 
 
       Figure 4a: Performance curve for weld factor of safety Figure 4b: gradient function plot for predicting weld factor of 
safety  
 
          
A regression plot was produced to check the relationships 
between the observed values and the network  
 
 

predictions. The regression plot for the weld factor of 
safety network is presented in figure 5. 
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            Figure 5: Regression plot for the weld factor of safety 
 
          Figure 6 illustrates a time series plot that can be 
used to understand the graphical contrast between the 

experimental result and the network output for the weld 
factor of safety. 

 

 
 
                                Figure 6: A time series plot for weld factor of safety 
 
                      Equation 1 presents the regression equation for the weld factor of safety. 
                      EXP = 0.8272 + 0.7290 ANN 
 
Table 6 displays the results of the model summary 
statistics for the weld factor of safety network, which  

illustrate the output strength of the network
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                                                           Table 6: ANN Model Summary for weld factor of safety 
 
 
 
 
          
The analysis of variance for the network output to check  for the significance of the network as shown in table 7.
 
 
                                        Table 7: Artificial Neural Network Analysis of Variance for weld factor of safety 
 

Source DF SS MS F P 

Regression 1 1.54840 1.54840 65.94 0.000 

Error 18 0.42265 0.02348   

Total 19 1.97105    

 
 
          A fitted plot for the artificial network output was 
done to ilustrate the correlation between the experimental 

and the weld factor of safety model developed,which is 
shown in figure 7 

 

 
 
                                  Figure 7: fitted line plot for the weld factor of safety 
 
 
4.4   DISCUSSION 
 
          In this study, the weld factor of safety was predicted 
and optimized using the Response Surface 
methodology and artificial neural network methods. The 
input parameters include voltage, current, and gas flow 
rate, while the response is the weld factor of safety. With 
a coefficient of correlation of 0.9842, the link involving the 
procedure variables and the weld strength is quadratic 
and demonstrates a significant correlation between the 
variables of current, voltage, and weld strength. The 
ANOVA table demonstrates the model's importance and 
has a P-value of less than 0.0001 and a very good fit. The  

 
 
goodness of fit statistics provided a Coefficient of 
determination R2 of 0.9842, indicating how well the model 
can predict the chosen variables' values that will optimize 
the weld factor of safety, validating the model's 
importance and suitability based on its capacity to 
maximize the weld strength factor. The model has a noise 
to signal ratio of 29.157, which is larger than 4 is preferred 
and denotes a strong signal.  The same statistical 
diagnostics was employed for the weld factor of safety 
response.  From the result, it was seen that there is a 
strong correlation between the current had a strong  

34. Spr Int. Eng. Res J.  Research Papers 

S R-sq R-sq(adj) 

0.153234 78.56% 77.37% 



 
 
 
 
correlation with the weld factor of safety with coefficient of 
correlation values of 0.9817 and 0.9882 respectively, the 
result obtained showed that the variance inflation factor 
(VIF) was 1.00 which is expected. 
          Lastly, numerical optimization was carried out to 
determine whether the entire model was desirable. We 
request the design specialist to increase the weld factor 
of safety during the numerical optimization phase. 
According to table 4.10's data, a weld with a weld factor 
of safety of 3.6253 will be produced by a current of 210.00 
amps, a voltage of 22.66 volts, and a gas flow rate of 20 
litres per minute. Design experts determined that this 
option, which has a desirability rating of 0.880, is the best 
one. The study demonstrates effective application of 
artificial neural networks in predicting the weld factor of 
safety for tungsten inert gas welding of mild steel plates.  
The mean square error was used to measure the 
performance of the network in each run. The network's 
mean square performance index is a quadratic function. 
Three sets of the input data are generated at random. 
15% are used to verify the network performance after 
15% are used to train the network and 15% are used for 
the test. For the training interphase the network provided 
a correlation value of 99.8% with a mean square error of 
2.766E-7. The validation of the network model produced 
a correlation value of 94.0% with a mean square error of 
1.040E-4. the testing of the network model produced a 
correlation of 97.7% with mean square error 1.003E-5. 
The performance plot showed that the model developed 
was learning, which is expected of a very good network. 
Lastly the artificial network model produced predicted 
values for the weld strength, weld quality index and weld 
factor of safety of which the predicted values and the 
experimental values of the responses, closely fit and are 
in reasonable agreement with a high coefficient of 
correlation.  
 
 
Conclusion  
 
          The assessment of a weld's integrity hinges on the 
weld bead's quality index and strength. A weld with 
elevated strength and a robust factor of safety 
corresponds to heightened integrity and dependability. In 
this investigation, both the response surface method and 
the artificial neural network model were harnessed to 
prognosticate and enhance the aforementioned output 
parameters. Analysis of the outcomes underscores the 
preference for the response surface methodology as the 
superior predictive model, surpassing the Artificial Neural 
Network in virtue of its lower mean square error value. 
Through the development of a mathematical model 
employing the Response Surface Methodology and the 
Artificial Neural Networks, the optimization and prediction 
of the weld factor of safety were achieved, thereby 
augmenting the longevity and integrity of welded joints. 
Rigorous testing and validation have attested to the 
model's robustness, precision, and effectiveness. 

          The findings derived from this study indicated a 
robust correlation between current and the mean weld 
strength factor, signifying that the manipulation of current 
holds the potential to enhance the weld strength factor. 
The independent term's variance inflation factor had a 
value of 1, while the combined and quadratic terms of the 
input factors demonstrated a value of 1.04. The outcomes 
unveiled the superiority of the enhanced second-order 
gradient technique, recognized as the Levenberg 
Marquardt Back Propagation training algorithm, which 
was chosen as the optimal learning rule for shaping the 
network architecture. Notably, the training algorithm was 
configured with 10 hidden neurons in both the input and 
output layers. 
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