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Abstract 

 
The rapid proliferation of intelligent edge devices has intensified the demand for real-time artificial intelligence (AI) 
inference under strict constraints on latency, energy consumption, and hardware resources. Conventional cloud-based 
inference and general-purpose processors are increasingly inadequate for meeting these requirements, particularly in 
latency-critical and power-constrained edge environments. This paper presents the design, implementation, and 
evaluation of a custom framework for hardware acceleration of AI inference at the edge, emphasizing energy efficiency 
and hardware–software co-design. The proposed system adopts a heterogeneous architecture that integrates a general-
purpose host processor with a specialized hardware accelerator optimized for neural network inference. Lightweight 
convolutional neural networks representative of edge workloads are mapped onto the accelerator using a dataflow-
oriented execution model, low-precision arithmetic, and a multi-level memory hierarchy to minimize data movement. A 
hardware-software co-design approach is used to make sure that model architectures, compilation strategies, and 
runtime execution all work with the capabilities of the accelerator. The accelerator is prototyped on an FPGA-based edge 
platform and evaluated using real-time inference benchmarks. Experimental results show that inference latency and 
energy use are much lower than with CPU- and GPU-based systems. This means that the system works better per watt 
while staying within tight edge power budgets. The findings further reveal critical trade-offs between inference accuracy, 
latency, power consumption, and architectural flexibility, and they confirm the effectiveness of quantization and memory 
optimization techniques in enabling real-time edge AI inference. This work provides a systematic design and evaluation 
framework for AI-driven hardware acceleration at the edge and offers practical insights into architectural and co-design 
strategies that address the limitations of general-purpose processors for emerging edge AI applications. 
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1: INTRODUCTION 
 
1.1 Background on Edge Computing and the Growing 
Demand for On-Device AI Inference 
 
        Edge computing has become an important idea in 
modern computing. It moves data processing from 
centralized cloud servers to devices that are physically 
close to the data sources. This distributed approach 
enables applications to process data locally, reducing 
the need for extensive back-and-forth communication 
with distant cloud infrastructure and enabling far lower 
end-to-end latency for real-time workloads. By pushing 
computation closer to where data is generated, edge 
computing supports intelligent systems such as 
autonomous vehicles, industrial automation, and 
healthcare monitoring that require immediate decision-
making capabilities (Mohan, 2024; McCall, 2025). 

 
 
 
 
 
The convergence of edge computing and artificial 
intelligence (AI), often termed "Edge AI," enhances this 
paradigm by enabling on-device AI inference—the 
process of running trained AI models directly on edge 
devices without reliance on remote servers. This 
capability has become increasingly vital as AI models 
become integral to everyday technologies, from smart 
sensors in Internet of Things (IoT) networks to advanced 
driver-assistance systems in vehicles (Mohan, 2024). 
       One of the fundamental drivers for Edge AI is the 
rapid growth in data generation. As more and more 
devices are connected, the amount of data they create 
keeps growing at an alarming rate. This makes it  
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impossible for many latency-sensitive tasks to be 
processed in one place. Processing this data at the edge 
reduces network congestion and allows systems to act on 
insights in milliseconds rather than seconds, which is 
essential in applications such as real-time object 
detection and medical alerts (Mohan, 2024; McCall, 
2025). 
Real-time applications like drone navigation, robotic 
control, and remote patient monitoring need to be able to 
make quick decisions and work without a stable network 
connection. Edge AI empowers these systems to maintain 
high performance even in environments where cloud 
access may be unreliable or unavailable, ensuring 
continuity and robustness (McCall, 2025). 
      Energy consumption has also become a central 
concern in edge environments. Many edge devices are 
battery-operated or deployed in remote locations where 
energy efficiency directly impacts operational lifetime. 
Designing systems that can carry out AI inference locally 
while managing power budgets is therefore a key 
objective in current edge computing research (Mohan, 
2024). 
      In addition to latency and energy considerations, on-
device AI inference enhances data privacy and security 
by limiting the transfer of sensitive information to external 
cloud servers. This localized processing reduces 
exposure to potential breaches and aligns with stringent 
data protection regulations in sectors like finance and 
healthcare (McCall, 2025). 
       Despite these advantages, the successful 
deployment of AI at the edge requires careful rethinking 
of both software and hardware. Conventional computing 
platforms often lack the optimized architectures 
required to execute complex neural networks efficiently 
under constrained energy and performance budgets. This 
gap has driven significant research interest in specialized 
AI accelerators tailored for edge environments (Mohan, 
2024). 
      Thus, the intersection of edge computing and AI 
represents not only a technological evolution but also a 
necessary progression to meet the performance, privacy, 
and efficiency demands of modern intelligent systems. In 
this situation, hardware acceleration is key to making 
advanced AI inference possible directly on edge devices. 
  
1.2 Limitations of Cloud-Based AI for Latency-Critical 
and Power-Constrained Edge Inference 
 
      Traditional cloud-based AI inference has powered 
many early machine learning applications due to the 
abundant computational resources and scalability of 
centralized data centers. However, cloud-centric 
approaches introduce significant latency due to the 
distance between data generation and processing 
locations. This round-trip communication delay can make 
cloud inference useless for tasks that need quick 
responses, like controlling an autonomous vehicle or 
analyzing video in real time (Mohan, 2024). 

      Network bottlenecks and variable bandwidth, 
particularly in wireless or congested network 
environments, compound latency. The additional time 
spent transmitting data to remote servers and awaiting 
responses can range from tens to hundreds of 
milliseconds—far exceeding the latency requirements of 
many real-time AI applications (Thota, 2024). 
Besides latency, the reliability of cloud connectivity 
remains a challenge. Dependence on external 
communication links means that cloud AI systems may 
fail or degrade when connectivity is poor or unavailable. 
In contrast, edge inference systems can continue 
operating autonomously, ensuring uninterrupted 
performance in critical scenarios such as health 
monitoring or industrial safety systems (McCall, 2025). 
       Another inherent limitation of cloud processing is 
energy inefficiency. Transmitting large volumes of data 
back and forth consumes significant power both at the 
device and network levels. For battery-powered devices, 
this communication overhead can drastically shorten 
operational lifetime, reducing the practicality of persistent 
cloud-based AI (Mohan, 2024). 
      Cloud platforms also raise privacy and security 
concerns, as transferring sensitive data outside secure 
local domains exposes it to potential interception and 
misuse. Regulatory frameworks such as GDPR and 
HIPAA further restrict how and where certain types of data 
can be processed, making cloud inference less viable for 
privacy-critical applications (McCall, 2025). 
      Finally, cloud AI systems often struggle to scale cost-
effectively for massive edge deployments. High data 
transfer costs and cloud service expenses can become 
prohibitive as the number of connected devices grows, 
motivating a shift toward localized computation that 
minimizes reliance on external resources (Thota, 2024). 
  
 
1.3 Motivation for Hardware Acceleration of Neural 
Networks at the Edge 
 
       The limitations of both conventional processors and 
cloud-centric AI inference fuel the need for specialized 
hardware accelerators tailored to edge environments. 
General-purpose CPUs and GPUs are often ill-suited for 
executing large neural networks within the constrained 
power envelopes and physical sizes of edge devices. This 
mismatch pushes researchers to come up with custom 
accelerator designs, like FPGA- and ASIC-based 
solutions, that can greatly improve performance and 
energy efficiency (Yadav, 2024). 
      Hardware accelerators exploit parallel computing, 
optimized dataflows, and custom instruction sets to 
accelerate matrix-intensive neural network operations. By 
designing hardware around specific inference tasks, 
these accelerators can process data faster and at lower 
power than traditional architectures, enabling real-time 
performance in resource-limited settings (Yadav, 2024). 
       In addition to raw performance, hardware-software  
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co-design methodologies help tailor AI models and 
execution frameworks to the unique characteristics of 
edge hardware. This co-optimization maximizes 
throughput while minimizing energy consumption, making 
advanced AI feasible on devices previously incapable of 
supporting such workloads (Yadav, 2024). 
      The emergence of diverse accelerator technologies—
such as FPGAs for flexibility and ASICs for efficiency—
provides researchers with a spectrum of design choices 
to balance performance, power, and cost. This diversity 
enables domain-specific optimization for applications 
ranging from IoT sensors to autonomous robots (Yadav, 
2024). 
      Given that edge devices are increasingly expected to 
support more complex models—including convolutional 
neural networks and next-generation lightweight 
transformers—hardware acceleration becomes 
indispensable for maintaining responsive and efficient 
inference (Gauttam et al., 2025). 
      Finally, energy efficiency gains achieved through 
hardware acceleration directly support the sustainability 
goals of modern computing systems by reducing power 
consumption and extending device lifespan in battery-
constrained environments (Mohan, 2024). 
  
 
1.4 Problem Statement: Inefficiency of General-
Purpose Processors for Real-Time AI Workloads 
 
      General-purpose processors (GPPs), such as 
conventional CPUs, dominate many embedded systems 
due to their flexibility and ease of programming. However, 
these processors lack the architectural specialization 
needed to execute deep learning models efficiently under 
stringent latency and power restrictions typical of edge 
devices. This gap has increasingly prevented GPPs from 
meeting the real-time inference demands of many AI 
applications (Mohan, 2024). 
Unlike dedicated accelerators, GPPs are not optimized for 
highly parallel operations inherent to neural network 
inference. Deep learning workloads often consist of 
millions to billions of multiply-accumulate operations that 
benefit from architectural features such as systolic arrays 
or clustered vector units—features absent from most 
CPUs (Yadav, 2024). 
      Consequently, executing AI inference on general-
purpose processors often leads to poor performance 
per watt, which is critical for devices constrained by 
battery capacity or thermal limits. This inefficiency not 
only hampers real-time responsiveness but also 
accelerates power depletion in mobile and autonomous 
systems, reducing usability and reliability. 
      Moreover, the rising complexity of neural networks—
driven by demands for higher accuracy and more 
sophisticated capabilities—exacerbates this performance 
gap. Larger models put more strain on general 
processors, which causes unacceptable inference delays 
and makes GPPs unusable without a lot of optimization. 

Such deficiencies have catalyzed the development of 
domain-specific accelerators that embed specialized 
computational engines capable of handling AI tasks more 
efficiently than general logic units. These accelerators are 
designed to reduce memory movement, exploit data 
reuse, and support model-specific operations, thus 
improving both speed and energy consumption (Yadav, 
2024). 
      Additionally, GPPs often cannot support the 
hardware-software co-optimization strategies that 
maximize overall system efficiency. Co-design 
approaches require deep integration between algorithmic 
structures and hardware features, which general 
processors are not designed to facilitate. 
  
 
1.5 Research Objectives and Scope 
 
       This research aims to design, implement, and 
evaluate custom hardware accelerators optimized for 
artificial intelligence inference in edge computing 
environments. The emphasis is on accelerators utilizing 
field-programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs), which present 
advantageous compromises among flexibility, 
performance, and energy efficiency for resource-limited 
edge devices. 
The primary objective of this study is to improve the 
efficiency of on-device AI inference by addressing the 
limitations of general-purpose processors in terms of 
latency, power consumption, and scalability. To achieve 
this goal, the research pursues the following specific 
objectives: 
1. To identify architectural features—including processing 
element organization, memory hierarchy design, and 
dataflow strategies—that maximize inference throughput 
while minimizing energy consumption in edge AI 
accelerators. 
2. The research also aims to investigate hardware–
software co-design techniques that align neural network 
models, compilation strategies, and runtime execution 
with accelerator capabilities to achieve deterministic, real-
time inference performance. 
3.  To quantify performance-power trade-offs across 
different edge computing platforms by evaluating the 
proposed accelerator designs under representative AI 
inference workloads. 
The scope of this research encompasses both 
architectural design and experimental evaluation, 
focusing on inference-only workloads rather than training. 
The evaluation targets representative edge application 
scenarios such as real-time vision processing and 
embedded intelligent systems, with emphasis on latency, 
energy efficiency, and performance per watt. 
 
1.6 Research Questions 
 
      To systematically address the stated objectives and 
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guide the investigation, this research is structured around 
the following research questions: 
1.  What hardware architectural innovations—including 
processing element design, memory organization, and 
dataflow mechanisms—deliver the most significant 
improvements in performance per watt for AI inference on 
edge devices? 
2.  How can hardware–software co-design strategies be 
leveraged to optimize real-time AI inference performance 
under strict latency and power constraints typical of edge 
computing environments? 
3.   What are the key trade-offs between inference 
accuracy, latency, and power consumption in custom 
accelerator designs for edge AI applications? 
 
 
2: REVIEW OF RELATED LITERATURE 
 
2.1 AI Inference Workloads in Edge Applications 
 
      AI inference workloads deployed at the edge are 
characterized by strict constraints on latency, energy 
consumption, and memory capacity. Among these 
workloads, convolutional neural networks (CNNs) 
dominate edge deployments, particularly in computer 
vision tasks such as object detection, image classification, 
and video analytics (Sun et al., 2024). Lightweight CNN 
architectures such as MobileNet and EfficientNet have 
been specifically designed to reduce parameter count and 
arithmetic intensity while maintaining acceptable 
accuracy, making them suitable for resource-constrained 
devices (Wang & Jia, 2025). 
       Sequential data processing tasks at the edge often 
rely on recurrent neural networks (RNNs) and gated 
variants such as long short-term memory (LSTM) and 
gated recurrent units (GRUs). These models are widely 
used in speech recognition, predictive maintenance, and 
sensor data analytics; however, their inherently 
sequential computation limits parallelism, reducing 
efficiency on many edge accelerators (Wang & Jia, 2025). 
Consequently, recent studies propose hybrid or 
convolution-based temporal models that better align with 
parallel hardware execution. 
More recently, lightweight transformer models have 
emerged as viable inference workloads for edge systems. 
Optimized variants such as TinyBERT and MobileViT 
reduce attention complexity and parameter size, enabling 
transformer-based inference within edge power budgets 
(Xu et al., 2025). Despite these advances, transformer 
inference remains computationally demanding, 
reinforcing the need for specialized acceleration 
strategies. 
      Collectively, these workload characteristics 
underscore the challenge identified in Chapter 1: 
conventional computing platforms struggle to meet 
real-time edge inference demands, particularly as 
model complexity continues to grow. 
 
 

2.2 Existing Hardware Acceleration Approaches 
 
2.2.1 CPUs, GPUs, and NPUs 
 
      General-purpose CPUs remain prevalent in edge 
devices due to their programmability and mature software 
ecosystems. However, CPUs lack architectural 
specialization for the massively parallel matrix operations 
fundamental to neural network inference, resulting in poor 
performance-per-watt metrics (Mohan et al., 2024). GPUs 
offer higher parallelism and throughput but often exceed 
acceptable power budgets for deeply embedded edge 
platforms (McCall, 2025). 
To bridge this gap, neural processing units (NPUs) 
have been integrated into modern system-on-chips. 
NPUs employ fixed-function tensor engines and low-
precision arithmetic to significantly improve inference 
efficiency (Wang & Jia, 2025). While effective, NPUs are 
typically optimized for specific workloads and lack 
flexibility for evolving model architectures. 
 
 
2.2.2 FPGA-Based Accelerators 
 
      FPGAs are a great choice for edge AI acceleration 
because they are both flexible and efficient. By mapping 
neural network operations directly into reconfigurable 
logic, FPGA-based accelerators achieve higher energy 
efficiency than CPUs and GPUs while retaining 
adaptability to different models (Zhang et al., 2023). 
Research indicates that tailored dataflow architectures 
and on-chip memory optimization markedly decrease 
latency and energy usage for CNN inference on FPGAs 
(Li et al., 2025). 
       However, FPGA design complexity and limited on-
chip resources pose challenges for large-scale or multi-
model deployment, motivating further research into 
optimized FPGA architectures and toolchains. 
 
 
2.2.3 ASIC-Based AI Accelerators 
 
      ASIC-based accelerators represent the state-of-the-
art in energy-efficient AI inference. By eliminating general-
purpose overhead and tailoring architectures to specific 
neural operations, ASICs achieve superior throughput 
and power efficiency (Sze et al., 2023). Commercial and 
research ASICs report orders-of-magnitude 
improvements in operations per watt compared to CPUs 
(Gauttam et al., 2025). 
      Despite these benefits, ASICs suffer from limited post-
fabrication flexibility, making them less adaptable to 
rapidly evolving AI models—an issue directly relevant to 
the performance-versus-power trade-offs highlighted 
in Chapter 1. 
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2.3 Energy-Efficient Neural Network Techniques 
 
Quantization reduces numerical precision, commonly to 
8-bit or lower, significantly decreasing computation cost 
and memory bandwidth requirements. Quantized 
inference has been shown to reduce power consumption 
with minimal accuracy degradation when quantization-
aware training is employed (Li et al., 2024). 
 
Pruning techniques remove redundant parameters or 
channels from trained networks, producing sparse 
models that reduce computation and storage 
requirements. When supported by appropriate hardware 
mechanisms, pruning can yield substantial energy 
savings and latency reduction (Journal of Edge 
Computing, 2025). 
 
Model compression, including pruning, quantization, 
and knowledge distillation, enables the deployment of 
complex models on constrained edge hardware. These 
techniques are widely recognized as essential enablers of 
real-time edge inference but often require hardware-
aware implementation to realize their full benefits (Sun 
et al., 2024). 
 
 
2.4 Hardware–Software Co-Design in Edge AI 
Systems 
 
      Hardware–software co-design has emerged as a 
critical strategy for addressing the inefficiencies of 
general-purpose processors in edge AI systems. Co-
design approaches jointly optimize neural network 
architectures, compilation frameworks, and hardware 
micro-architectures to maximize performance and energy 
efficiency (Wang & Jia, 2025). 
Examples include designing neural layers that align with 
accelerator data paths, compiler-guided memory tiling, 
and runtime scheduling across heterogeneous compute 
units (Li et al., 2024). Such strategies directly support the 
research objective stated in Chapter 1: achieving real-
time inference under strict power constraints. 
Nevertheless, existing co-design frameworks often lack 
portability and standardized evaluation methodologies, 
limiting their applicability across diverse edge platforms. 
 
 
2.5 Comparative Analysis and Research Gaps 
 
      A comparative analysis of prior work reveals several 
persistent gaps. First, most accelerator designs focus 
primarily on CNN workloads, with limited support for 
transformers, recurrent models, or dynamic neural 
architectures (Xu et al., 2025). Second, while energy-
efficiency techniques are well studied in isolation, their 
combined impact on accuracy, latency, and power 
across different hardware platforms remains 
underexplored (Gauttam et al., 2025). 

      Furthermore, the absence of unified benchmarking 
standards complicates objective evaluation of edge AI 
accelerators (Mohan et al., 2024). Finally, current 
hardware–software co-design methodologies often 
require significant manual effort and lack scalability. 
 
 
3: System Architecture and Design Methodology 
 
3.1 Overall System Architecture for AI Inference at the 
Edge 
 
      The proposed system architecture targets efficient 
on-device AI inference in edge environments 
characterized by constrained power budgets, limited 
memory resources, and strict real-time latency 
requirements. At a high level, the system follows a 
heterogeneous computing paradigm, integrating a 
general-purpose processor with a custom hardware 
accelerator dedicated to neural network inference. This 
architecture enables the separation of control-dominant 
tasks and data-parallel computation, thereby improving 
overall system efficiency (Mohan et al., 2024). 
       The edge device architecture consists of three 
primary components: (i) a host processor responsible for 
system control and non-critical tasks, (ii) a hardware 
accelerator optimized for neural network inference, and 
(iii) a shared memory subsystem that facilitates high-
bandwidth data exchange between the host and 
accelerator. Such an organization is widely adopted in 
state-of-the-art edge AI platforms due to its balance 
between flexibility and performance (Sze et al., 2023). 
       Inference workloads are offloaded from the host 
processor to the accelerator through a lightweight runtime 
interface. This offloading mechanism minimizes host 
processor utilization and enables deterministic inference 
latency, which is essential for real-time edge applications 
such as autonomous sensing and industrial monitoring 
(McCall, 2025). The architecture is designed to support 
batch-1 inference, reflecting the real-time, streaming 
nature of many edge workloads. 
 
 
3.2 Selection of Target Neural Network Models and 
Edge Application Scenario 
 
       The selection of target neural network models is 
guided by their prevalence in real-world edge applications 
and their representative computational characteristics. In 
this work, lightweight convolutional neural networks 
(CNNs)—such as MobileNet-V2 and EfficientNet-Lite—
are chosen as primary benchmarks due to their 
widespread adoption in edge vision tasks and favorable 
accuracy-efficiency trade-offs (Sun et al., 2024). 
       To evaluate generality, the architecture also 
considers inference workloads with varying computational 
patterns, including depthwise separable convolutions and 
pointwise operations. These patterns stress different  
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aspects of the hardware design, particularly memory 
bandwidth and parallel execution efficiency (Wang & Jia, 
2025). 
The target application scenario is real-time object 
detection on an embedded edge platform, 
representative of use cases in smart surveillance, 
robotics, and autonomous systems. This scenario 
imposes strict latency constraints while operating under 
limited power budgets, making it well suited for evaluating 
the effectiveness of the proposed accelerator architecture 
(Mohan et al., 2024). 
 
 
3.3 Hardware Accelerator Design 
 
3.3.1 Processing Elements 
 
      The hardware accelerator is composed of an array of 
processing elements (PEs) optimized for multiply-
accumulate (MAC) operations, which dominate neural 
network inference workloads. Each PE integrates low-
precision arithmetic units to support quantized inference, 
thereby reducing computation cost and power 
consumption (Sze et al., 2023). 
The PE array is organized to enable scalable parallelism, 
allowing multiple neural network layers or channels to be 
processed concurrently. This design exploits both spatial 
and temporal parallelism inherent in CNN workloads, 
significantly improving throughput compared to general-
purpose processors (Gauttam et al., 2025) 
 
. 
3.3.2 Memory Hierarchy 
 
      Memory access patterns play a critical role in 
determining accelerator energy efficiency. To minimize 
expensive off-chip memory accesses, the proposed 
design employs a multi-level memory hierarchy, 
including on-chip buffers for weights, activations, and 
partial sums. This hierarchy maximizes data reuse and 
reduces memory bandwidth requirements, which are 
major contributors to energy consumption in deep 
learning inference (Sze et al., 2023). 
       The memory subsystem is explicitly co-designed with 
the compute architecture to ensure that data movement 
is aligned with the selected dataflow strategy. Such tight 
coupling between compute and memory is essential for 
achieving high performance per watt in edge accelerators 
(Zhang et al., 2023). 
 
 
3.3.3 Dataflow and Parallelism 
 
      The accelerator adopts a dataflow-oriented 
execution model, where computation is structured to 
maximize locality and reuse of data within the PE array. 
Common dataflow strategies, such as output-stationary or 
weight-stationary mappings, are evaluated to determine 

their impact on latency and energy efficiency for the target 
workloads (Zhang et al., 2023). 
       Parallelism is exploited at multiple levels, including 
intra-layer parallelism across channels and inter-layer 
pipelining where feasible. This approach enables 
continuous utilization of the accelerator resources while 
maintaining deterministic execution timing, a key 
requirement for real-time edge inference (Wang & Jia, 
2025). 
 
 
3.4 Hardware–Software Co-Design Approach 
 
3.4.1 Mapping AI Models to Hardware 
 
       A hardware–software co-design methodology is 
employed to ensure that neural network models are 
efficiently mapped onto the accelerator architecture. 
Model layers are analyzed to identify computational 
bottlenecks and memory access patterns, which inform 
the configuration of PE allocation, tiling strategies, and 
dataflow selection (Li et al., 2024). 
Quantization-aware and hardware-aware optimizations 
are incorporated during model preparation to align 
numerical precision and layer structures with accelerator 
capabilities. This co-optimization ensures that algorithmic 
efficiency gains translate directly into hardware-level 
performance improvements (Sun et al., 2024). 
 
 
3.4.2 Software Stack 
       The software stack consists of a lightweight driver 
layer, a runtime scheduler, and a compilation toolchain 
that translates high-level AI models into accelerator-
specific execution instructions. The runtime manages 
task scheduling, memory transfers, and synchronization 
between the host processor and accelerator (Mohan et 
al., 2024). 
This modular software architecture promotes portability 
and facilitates rapid experimentation with different models 
and accelerator configurations, addressing one of the key 
limitations identified in prior co-design frameworks (Wang 
& Jia, 2025). 
 
 
3.5 Power and Energy Optimization Techniques 
 
      Power and energy efficiency are central design goals 
of the proposed system. Multiple optimization techniques 
are employed, including low-precision arithmetic, 
aggressive data reuse, and clock gating of idle hardware 
units. These techniques collectively reduce dynamic and 
static power consumption without compromising 
inference accuracy (Gauttam et al., 2025). 
       Additionally, workload-aware scheduling is used to 
adapt accelerator operation to real-time performance 
demands, enabling energy savings during periods of 
reduced activity. Such adaptive strategies are particularly  
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important for battery-powered edge devices deployed in 
dynamic environments (McCall, 2025). 
 
 
3.6 Design Constraints 
 
      The accelerator design is constrained by area, 
power, and latency requirements typical of edge 
devices. Area constraints limit the size of PE arrays and 
on-chip memory, necessitating careful architectural trade-
offs. Power constraints are dictated by thermal limits and 
battery capacity, requiring energy-efficient operation 
across all workloads (Sze et al., 2023). 
      Latency constraints are derived from the real-time 
application scenario and serve as a primary performance 
metric in the evaluation phase. The design methodology 
explicitly balances these constraints to achieve an optimal 
trade-off between performance and efficiency, directly 
addressing the research objectives defined in Chapter 1. 
Link to Subsequent Evaluation 
      This chapter establishes the architectural foundation 
and design rationale for the proposed AI accelerator. 
Chapter 4 builds upon this framework by detailing the 
implementation and experimental evaluation of the 
system, focusing on performance, power consumption, 
and real-time inference capability. 
 
 
4: Implementation and Experimental Evaluation 
 
4.1 Implementation Platform and Experimental Setup 
 
      The proposed AI inference accelerator was 
implemented and evaluated on a representative edge 
computing platform to validate its performance, energy 
efficiency, and real-time inference capability. The 
implementation targets a heterogeneous edge system 
consisting of a host processor and a custom hardware 
accelerator, reflecting the architecture described in 
Chapter 3. For prototyping and evaluation, an FPGA-
based platform was selected due to its flexibility, 
reconfigurability, and widespread use in edge AI research 
(Zhang et al., 2023). 
      The accelerator was synthesized using industry-
standard hardware description languages and toolchains. 
The host processor executes control logic and pre/post-
processing tasks, while inference computation is 
offloaded to the accelerator through a memory-mapped 
interface. Communication between the host and 
accelerator is managed via a shared memory region, 
minimizing data transfer overhead and ensuring 
deterministic execution latency (Mohan et al., 2024). 
      The experimental environment includes power 
measurement instrumentation to capture real-time energy 
consumption and latency profiling tools to measure end-
to-end inference delay. All experiments were conducted 
under consistent operating conditions to ensure fair and 
repeatable comparisons. 

4.2 Benchmark Neural Network Models and Datasets 
 
      To evaluate the effectiveness of the proposed 
accelerator across representative edge workloads, a set 
of lightweight convolutional neural networks was 
selected. MobileNet-V2 and EfficientNet-Lite were used 
as primary benchmarks due to their widespread adoption 
in edge vision applications and favorable accuracy-
efficiency trade-offs (Sun et al., 2024). 
      The models were trained offline using standard 
datasets and subsequently optimized for inference using 
quantization-aware training. Inference was evaluated 
using batch size one to reflect real-time edge deployment 
scenarios. Input data streams emulate live sensor input, 
ensuring that measured latency and throughput 
accurately represent operational conditions in edge 
systems (Wang & Jia, 2025). 
 
4.3 Performance Evaluation Metrics 
 
      Performance evaluation focuses on metrics that 
directly reflect the requirements of edge AI inference: 

 Inference latency, defined as the time from input data 
availability to output prediction. 

 Throughput, measured as inferences per second. 

 Energy consumption per inference, capturing the total 
energy used during inference execution. 

 Performance per watt, reflecting efficiency under power 
constraints. 
These metrics are widely used in previous studies of edge 
AI accelerators and provide a comprehensive view of 
system effectiveness (Sze et al., 2023; Gauttam et al., 
2025). 
 
 
4.4 Latency and Throughput Results 
 
      Experimental results demonstrate that the proposed 
accelerator achieves significant latency reduction 
compared to CPU-only execution on the same platform. 
For MobileNet-V2 inference, latency was reduced by an 
order of magnitude, enabling real-time performance well 
within application-specific deadlines. 
      Throughput measurements indicate sustained high 
utilization of the processing elements due to effective 
exploitation of data-level parallelism and pipelined 
execution. The dataflow-oriented architecture minimizes 
idle cycles, ensuring consistent throughput across varying 
input conditions. These results validate the architectural 
choices described in Chapter 3, particularly the emphasis 
on parallel processing and memory locality (Zhang et al., 
2023). 
 
 
4.5 Power and Energy Consumption Analysis 
 
      Power measurements reveal that the accelerator  
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operates within strict edge power budgets while delivering 
high inference performance. Compared to CPU-based 
inference, the proposed design reduces energy per 
inference substantially, primarily due to low-precision 
arithmetic, reduced memory access, and aggressive data 
reuse. 
Energy efficiency gains are further enhanced by clock 
gating and workload-aware scheduling, which reduce 
dynamic power consumption during periods of low 
activity. These findings are consistent with prior studies 
emphasizing the importance of minimizing data 
movement and exploiting quantized computation for 
energy-efficient edge inference (Gauttam et al., 2025). 
 
 
4.6 Comparison with Baseline Architectures 
 
      To contextualize the performance improvements, the 
proposed accelerator was compared against baseline 
architectures, including CPU-only execution and a GPU-
based edge platform where applicable. Results show that 
while GPUs offer higher peak throughput, they consume 
significantly more power, making them less suitable for 
deeply embedded edge scenarios. 
      In contrast, the proposed accelerator achieves 
superior performance per watt, outperforming both 
CPU and GPU baselines under equivalent operating 
conditions. This comparison highlights the effectiveness 
of custom accelerator design for edge AI inference, 
particularly in environments where energy efficiency is a 
primary constraint (McCall, 2025). 
 
 
4.7 Impact of Model Optimization Techniques 
 
      The effect of quantization and model compression 
techniques was evaluated to assess their interaction with 
the hardware architecture. Quantized models achieved 
near-original accuracy while significantly reducing 
inference latency and energy consumption, confirming 
the importance of hardware-aware model optimization (Li 
et al., 2024). 
       Pruning further reduced computational load; 
however, its benefits were most pronounced when 
sparsity-aware execution was supported by the 
accelerator. To fully exploit model-level optimizations in 
edge AI systems, these results underscore the necessity 
of tight hardware–software co-design (Sun et al., 2024). 
 
 
4.8 Discussion of Results 
 
      The experimental results demonstrate that the 
proposed architecture effectively addresses the 
limitations of general-purpose processors identified in 
Chapter 1. By combining specialized processing 
elements, optimized memory hierarchy, and hardware–
software co-design, the system achieves real-time 
inference performance under stringent power constraints. 

      Nevertheless, trade-offs remain between flexibility 
and efficiency. While the FPGA-based implementation 
provides adaptability, ASIC-based implementations may 
further improve energy efficiency at the cost of reduced 
post-deployment flexibility. These trade-offs motivate 
future exploration of hybrid accelerator approaches. 
 
 
4.9 Summary 
 
      This chapter presented the implementation and 
experimental evaluation of the proposed AI inference 
accelerator for edge computing. Results confirm that the 
design meets real-time performance requirements while 
significantly improving energy efficiency compared to 
conventional computing platforms. The findings validate 
the design methodology and provide a strong foundation 
for the conclusions and future work discussed in Chapter 
5. 
 
 
5: RESULTS, DISCUSSION, AND CONCLUSION 
 
5.1 Summary of Results 
 
      This research investigated the design and evaluation 
of a custom hardware accelerator for AI inference at 
the edge, with a focus on energy efficiency, real-time 
performance, and hardware–software co-design. The 
experimental results presented in Chapter 4 demonstrate 
that the proposed architecture significantly improves 
inference latency, throughput, and energy efficiency 
compared to general-purpose computing platforms. 
Across benchmark workloads using lightweight 
convolutional neural networks, the accelerator 
consistently achieved substantially lower inference 
latency while operating within strict power budgets typical 
of edge devices. These improvements validate the 
effectiveness of the architectural choices made in terms 
of processing element organization, memory hierarchy, 
and dataflow optimization (Sze et al., 2023). 
       Furthermore, the results confirm that combining low-
precision arithmetic with data reuse strategies yields 
meaningful reductions in energy consumption per 
inference, supporting the primary objective of enabling 
sustainable, on-device AI inference for edge applications 
(Gauttam et al., 2025). 
 
 
5.2 Discussion of Key Findings 
 
      One of the most significant findings of this study is the 
demonstrated performance-per-watt advantage of 
custom hardware acceleration over CPU- and GPU-
based inference in edge environments. While GPUs 
provide high peak performance, their power consumption 
makes them less suitable for deeply embedded or battery-
powered devices. In contrast, the proposed accelerator 
achieves real-time inference with significantly lower  
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energy expenditure, addressing a core challenge 
identified in Chapter 1 (McCall, 2025). 
       The results also show how important it is to optimize 
the memory hierarchy. The accelerator cuts down on both 
latency and energy use by reducing off-chip memory 
accesses and increasing on-chip data reuse. This finding 
aligns with prior research emphasizing that data 
movement, rather than computation, is the dominant 
contributor to energy cost in deep learning inference (Sze 
et al., 2023). 
       Another key insight is the effectiveness of hardware–
software co-design. Hardware-aware model 
preparation, including quantization-aware training and 
structured model selection, ensured that algorithm-level 
optimizations translated directly into hardware-level 
gains. This reinforces the argument that isolated 
optimization at either the hardware or software level is 
insufficient for achieving optimal edge AI performance 
(Wang & Jia, 2025). 
 
 
5.3 Performance–Power Trade-Off Analysis 
 
      The experimental assessment demonstrates distinct 
trade-offs among performance, power consumption, and 
architectural adaptability. FPGA-based implementation 
offers a balanced compromise by providing configurability 
and reasonable energy efficiency, making it suitable for 
research prototyping and evolving workloads. However, 
ASIC-based implementations are expected to further 
enhance energy efficiency and throughput due to their 
ability to eliminate reconfigurability overheads (Gauttam 
et al., 2025). 
      The analysis also indicates that aggressive model 
optimization techniques, such as quantization and 
pruning, can reduce power consumption without 
significant accuracy loss when supported by appropriate 
hardware mechanisms. Nevertheless, these techniques 
may introduce additional design complexity and require 
careful calibration to maintain acceptable model 
performance. 
      Overall, the proposed architecture demonstrates that 
carefully balanced design choices can achieve real-
time inference while respecting the tight power and area 
constraints inherent to edge devices. 
 
5.4 Comparison with State-of-the-Art Approaches 
 
      When compared with state-of-the-art edge AI 
accelerators reported in the literature, the proposed 
design exhibits competitive performance and energy 
efficiency. While some ASIC-based solutions achieve 
higher absolute efficiency, they often lack flexibility and 
adaptability to new models or workloads (Mohan et al., 
2024). 
      The proposed system differentiates itself by 
emphasizing co-design and adaptability, making it  

suitable for a broad range of edge applications. This 
positions the work as a practical contribution to the field, 
bridging the gap between highly specialized accelerators 
and general-purpose computing platforms. 
 
 
5.5 Limitations of the Study 
 
      Despite its contributions, this study has several 
limitations. First, the experimental evaluation focuses 
primarily on convolutional neural networks; while 
representative, this limits the generality of conclusions for 
other model types such as transformers or graph neural 
networks. Second, the FPGA-based prototype introduces 
overheads not present in ASIC implementations, 
potentially underestimating achievable efficiency. 
      Additionally, power measurements were conducted 
under controlled conditions and may vary in real-world 
deployments where environmental factors and workload 
dynamics fluctuate. These limitations suggest 
opportunities for further validation and extension of the 
proposed design. 
 
 
5.6 Conclusions 
 
      This study shows that AI-driven hardware 
acceleration is a good way to make real-time, energy-
efficient inference possible in edge computing 
environments. By integrating specialized processing 
elements, optimized memory hierarchies, and a 
hardware–software co-design methodology, the 
proposed system overcomes the inefficiencies of general-
purpose processors for edge AI workloads. 
The results show that custom accelerators can greatly 
improve performance per watt while still being flexible and 
scalable. As edge devices continue to play a central role 
in intelligent systems, such architectures will be critical to 
supporting increasingly complex AI workloads under strict 
resource constraints. 
 
 
5.7 Future Work 
 
      Several directions for future research emerge from 
this study. First, extending the architecture to support 
transformer-based and multi-modal models would 
broaden applicability to emerging edge AI workloads. 
Second, transitioning from FPGA-based prototyping to 
ASIC implementation would enable further exploration 
of energy efficiency and area optimization. 
      Additional research could also focus on automated 
co-design toolchains that reduce development effort and 
improve portability across platforms. Finally, integrating 
adaptive runtime management techniques could further 
enhance energy efficiency under dynamic workload 
conditions. 
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Overall Contribution 
 
      In summary, this work contributes a systematic 
design and evaluation framework for AI hardware 
acceleration at the edge, addressing critical challenges in 
latency, power efficiency, and scalability. The results 
provide both architectural insights and practical guidance 
for the development of next-generation edge AI systems. 
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