
 

Abbreviated Key Title: Glob. J. Environ. Sci. Technol. 
ISSN: 2384-5058 (Print) & Open Access 

Vol. 12(2): Pp. 62-70, April, 2024. 

DOI:10.54978  

Global Journal of Environmental Science and Technology: ISSN-2360-7955, (Print) & Open Access 

Volume-12 | Issue-4| April, 2024 |                                              Research  Paper 
  

Application of Response Surface Methodology and 
Artificial Neural Network Analytical methods in 

modelling Shock Resistance of Pipeline Weldments 
 

1Mabiaku T.A., 1Achebo J. I., 2Ozigagun A., *1Uwoghiren F. O. 

1Department of Production Engineering, University of Benin, Benin City, Nigeria. 
2Department of Chemical Engineering, University of Benin, Benin City, Nigeria. 

E-mail: timothy.mabiaku@gmail.com, joseph.achebo@uniben.edu, andrew.ozigagun@uniben.edu, 
frank.uwoghiren@uniben.edu, 

Abstract: Heat transfer, given its various applications, has long been the focus of researchers and engineers. However, 

Shock Resistance also takes on a pivotal role in transporting an array of fluids and gases across various industrial 

domains. This study bridges this discrepancy by scrutinizing the after-effects of a specific non-elastic factor, namely 

shock resistance, on pipeline weldments and its interaction with elastic properties. This investigation unveils the intricate 

interrelation, underscoring the necessity of encompassing non-elastic facets to ensure the dependability of pipeline 

weldments across various operational contexts. Cutting-edge techniques, such as machine learning algorithms and finite 

element simulations, are harnessed to accurately predict and optimize these non-elastic factors (Shock Resistance), 

thereby enhancing the overall strength and structural integrity of pipeline weldments. The experimental setup adheres 

to the central composite design, meticulously constructed using design expert software (version 13.0). The response 

surface methodology analysis yields optimal outcomes, suggesting a current of 160.000 amps, voltage of 21.280 volts, 

and gas flow rate of 14.667 liters per minute. These parameters collectively yield a welded joint with a shock resistance 

value of 0.729, achieving a desirability value of 0.918. Additionally, the artificial neural network model is employed to 

predict output parameters and compared against the RSM methodology. The study will aid  useful knowledge in the 

development of pipeline weldments that can withstand unexpected impact loads and contribute to the overall 

sustainability of pipeline systems. 
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1. INTRODUCTION 
 
           The construction and operation of pipelines for the 
transportation of various fluids, such as oil, gas, and 
water, constitute a critical aspect of modern industrial 
infrastructure (Seyyedattar et al., 2020). Ensuring the 
strength and structural integrity of pipeline weldments is 
of paramount importance to prevent potential failures that 
can result in severe environmental, economic, and safety 
consequences (Biezma et al., 2020). While substantial 
attention has been given to optimizing factors like tensile 
strength and fatigue resistance in pipeline weldments, 
there exists a noticeable research gap when it comes to 
the prediction and enhancement of shock resistance – a 
crucial yet understudied aspect that directly influences the 
ability of pipelines to withstand sudden impact loads and 
dynamic stresses. Historically, research efforts have 
predominantly concentrated on optimizing the elastic  

 
 
performance characteristics of pipeline weldments, such 
as yield strength and Young's modulus. However, there 
exists a notable gap in the literature concerning the 
prediction and enhancement of non-elastic properties, 
particularly shock resistance. The term ‘shock resistance’ 
describes a material's capacity to endure abrupt and 
powerful impacts without undergoing deformation or 
failure. This property is particularly relevant for pipeline 
weldments that are subjected to dynamic loading events, 
such as seismic activities, machinery vibrations, and 
impact forces (Prabowo et al., 2021). Shock resistance, 
defined as the capacity of a material or structure to absorb 
energy during impact, plays a pivotal role in maintaining 
the reliability of pipeline systems (Shojaei et al., 2021). 
The integrity of pipeline weldments in the face of shock 
events, such as accidental impacts or seismic  
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disturbances, is critical to preventing catastrophic failures 
that can lead to leakage, rupture, and subsequent 
environmental pollution or loss of life (Nwankwo, 2021). 
Given the diverse and often harsh operating conditions 
that pipelines are subjected to, from underground 
installations to offshore environments, optimizing shock 
resistance becomes a priority to ensure their robust 
performance and long-term durability (Rubino et al., 
2020). The optimization and prediction of shock 
resistance to enhance the strength and structural integrity 
of pipeline weldments is a pivotal area of research within 
the realm of material science and engineering 
(Tabatabaeian et al., 2022). Pipelines are indispensable 
components of various industries, facilitating the efficient 
transportation of fluids and gases over extensive 
distances. The ability of these pipelines to withstand 
dynamic and sudden loading conditions, commonly 
referred to as shock loading, is of paramount importance 
to ensure the safety, reliability, and longevity of the entire 
infrastructure (Elahibakhsh, 2023). 
           Optimizing shock resistance necessitates a 
comprehensive understanding of the underlying 
mechanisms that contribute to a material's ability to 
absorb and dissipate shock energy (Wang et al., 2022). 
Factors such as microstructural characteristics, material 
composition, heat treatment processes, and welding 
techniques play a crucial role in influencing shock 
resistance. Therefore, a holistic approach that 
encompasses material science, metallurgy, mechanical 
engineering, and computational modelling is imperative to 
tackle this multifaceted challenge (Callister Jr., 2018). 
While research within the realm of pipeline engineering 
has traditionally focused on static mechanical properties, 
the importance of dynamic response characteristics, 
particularly shock resistance, is increasingly being 
recognized. Recent advancements in science of 
materials, computational modelling, and experimental 
techniques have paved the way for a more 
comprehensive understanding of shock behaviour in 
pipeline weldments. Investigating the interplay between 
microstructure, material properties, and shock resistance 
is crucial for designing weldments that can withstand 
sudden and unpredictable impact loads (Quazi et al., 
2021). It is noteworthy that a comprehensive approach to 
optimizing shock resistance involves not only the 
selection of appropriate materials but also the meticulous 
design of weld geometries, joint configurations, and 
fabrication techniques (Laska and Szkodo, 2020). This 
multifaceted optimization process requires a thorough 
understanding of the mechanical behaviour of materials 
under shock loading conditions, as well as the utilization 
of advanced simulation tools and experimental validation 
methods (Sharma et al., 20220. Recent advancements in 
machine learning and artificial intelligence have also 
contributed to the prediction and optimization of shock 
resistance. These technologies facilitate the analysis of 
complex data sets and the identification of hidden 
patterns that impact shock resistance (Baduge et al., 
2022). By harnessing machine learning algorithms, 
researchers can develop predictive models that guide the 

optimization of welding parameters, material 
combinations, and structural configurations to bolster 
shock resistance (Dogra, 2018). In the quest to augment 
the shock resistance of pipeline weldments, this study 
aims to bridge the existing research gap by 
comprehensively exploring the dynamic response of 
various pipeline materials and weldment configurations to 
impact loading (Li, 2021). The utilization of finite element 
simulations, coupled with empirical testing, will allow for 
the accurate prediction of shock resistance and the 
identification of critical design parameters (Makarian and 
Santhanam, 2020).  
In this present paper, the authors used Response Surface 
Methodology (RSM) and Artificial Neural Network (ANN) 
to model and analyse the intricate relationship between 
current, voltage and gas flow rate with respect to shock 
resistance of pipeline weldments. Though, other 
algorithms have previously being employed, however, 
RSM and ANN have not been comparatively combined in 
modelling shock resistance of pipeline weldments.  
 
 
2. METHODOLOGY 
 
2.1 Process parameters  
 
          The process the factors evaluated in this research 
study are the welding voltage, current, and gas flow rate 
in correspondence with the welding pool temperature. 
This study combined two 60 x 40 x 10 mm mild steel 
plates using twenty experimental runs totaling the current, 
voltage, and gas flow rate. A Brinell hardness test unit is 
used to perform the Brinell hardness test. In this 
experiment, a tungsten carbide sphere of a specified 
diameter (D) undergoes the application of a 
predetermined force (F), which is maintained for a 
predetermined duration (T) before being subsequently 
released. The metal specimen in the test undergoes a 
permanent deformation, leaving an impression created by 
a spherical indenter. Obtaining the indentation diameter 
(d) involves averaging measurements taken at two or 
more different locations inside the indentation. The 
loading system for the Brinell Hardness Testing Machine 
is made up of weights, levers, a plunger, and a hydraulic 
dashpot. The test substance is stored on the movable 
anvil. The spherical ball indenter hit the material using the 
lever and exerted a preset force that was displayed on the 
screen. 
 
 
2.2 Design of experiment 
 
         A scientific method for planning and carrying out an 
experiment that will demonstrate a cause-and-effect link 
between variables is known as the design of an 
experiment. It can also be a rigorous strategy to changing 
the process inputs and examining the outcomes that 
result so that the cause-and-effect relationship between 
them and the random variability of the process can be 
measured with the fewest possible runs.   Scientific  
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research must include experimentation, which can be 
developed with the aid of computer programs like design 
expert and Minitab. Data is collected using an 
experimental methodology to ensure proper polynomial 
approximation.  There are various experimental design 
kinds, such as full factorial, Latin hyper cube, central 
composite circumscribed, and central composite face 
centred. 
          The central composite design (CCD) was chosen, 
and the design expert software was utilized to build the 
experimental matrix. The CCD employs the mathematical 
procedure indicated in equation (1). 
N = 2n + 2n + k                                                                                       
(1) 
Where N = Total number of experiments, n = number of 
input parameters. 
          The same program utilized for the model 
generation of all the responses is the design expert 
software. The core composite design of experiment was 
chosen based on the quantity of input parameters.  
 
 
2.3 Materials and experimental set-up  
 
          Thermocouples were attached to gas tungsten arc 
welding (GTAW) technique. It occurred at an operating 
current range of 150 to 200 A, on a 200 x 200 x 20 mm3 
a low-carbon steel block and a DCEN (Direct Current 
Electrode Negative) with a 4 mm arc gap was employed 
as a shielding gas. Temperatures between 1500 and 
1800 °C were recorded. The thermocouples were W5 
tungsten thermocouples. The thermocouple has good 
resistance to high temperatures and an overall diameter 
of 1.2 mm, including the sleeving and tungsten wires. The 
samples contained the thermocouples at a depth of 4 mm, 
a diameter of 1.4 mm, and an angle of 20°. The 
thermocouple attached to the sample of weld. 
 
 
2.4 Method of Data Collection 
 
          Twenty test runs for the center composite design 
matrix were produced utilizing the design expert software. 
The parameters for the input and output, as well as the 
results mentioned for the data acquired from the weld 
sample, are all part of the experimental matrix. The 
formula 2n + 2n + k, where k is the quantity of center 
points, 2n is the quantity of axial points, and 2n is the 
quantity of factorial points, provides the number of input 
parameters, which determines the size of the data matrix. 
Using RSM (Response Surface Methodology) and ANN 
(Artificial Neural Network), the data were examined. 
 
 
2.5   Response Surface Methodology 
 
          Engineers often utilize the Response Surface 
Methodology (RSM) to find the circumstances under 
which it best support the desired operation. In essence, 

they look for values of the input parameters for the 
procedure that yield the best results. The optimal value 
determined by the input parameters of the process could 
either be a minimum or a maximum. RSM is one of the 
optimization methodologies that is now used extensively 
to describe how the welding process functions and to 
determine the appropriate response.  To achieve optimal 
results, RSM encompasses a range of mathematical and 
statistical techniques designed to predict and model the 
desired outcome. Numerous input factors have an impact 
on this result.  
 
 
2.6 Artificial Neural Network 
 
          A distributed, massively parallel computer called a 
neural network has a built-in propensity to store 
experimental data and make it usable for applications. As 
a data mining tool, it is employed to find undiscovered 
patterns in datasets. It resembles the brain in two 
respects. Within the network, learning takes place, and 
synaptic weights—the intensities of internal neuron 
connections—are used to store the information.  The 
appropriate w is applied to the R input of a simple neuron. 
The bias added to the weighted inputs serves as the input 
to the transfer function f. Any differentiable transfer 
function f can generate the neurons' output. The transfer 
function logsig of a log-sigmoid is often used in multilayer 
networks. The function logsig generates outputs between 
0 and 1 as the neuron's net input changes from a negative 
value to a positive infinity. Using a different strategy in 
multilayer networks using the tan-sigmoid transfer 
function. Sigmoid output neurons are commonly used to 
handle problems involving pattern recognition, whereas 
linear output neurons are typically used to address 
problems involving function fitting. The artificial neural 
network is a data mining tool that makes use of the 
neuronal communication method that has been 
programmed into software and the theory of the human 
brain. It is a prediction tool that examines data through the 
processes of training, learning, validating, and testing.  
 
 
3. RESULTS 
 
3.1  Modelling and Optimization using RSM 
 
          In this research, an effort is made to use response 
surface methodology (RSM) to create a second order 
mathematical relationship between a few input 
parameters, such as current (I), voltage (V), and gas flow 
rate (GFR), along with one response variable, shock 
resistance. Maximizing shock resistance was the 
optimization model's main goal. 
           The ultimate goal of the optimization procedure 
was to identify the current (Amp), voltage (Volt), and gas 
flow rate (l/min) input variables with the highest possible 
shock resistance. 
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In order to provide experimental findings required for the 
optimization method; 

i. For the statistical design of the experiment 
(DOE), the central composite design technique (CCD) 
was utilized. The development and optimization 
processes were carried out using a statistical program. 
For this specific situation, it was determined to employ 
Design Expert 7.01.   

ii. A second step involved creating an experimental 
design matrix with 20 experimental runs and eight (8) 
factorial points (2n), six (6) axial points (2n), and six (6) 
center points (k)  
            In order to ensure that the quadratic model was 
suitable for assessing the experimental findings, the 
sequential model sum of squares for the % dilution 
response was calculated, as shown in Table I. 

 
 
                    Table  I: Sequential model sum of square for shock resistance 

 

Source 
Sum of 
Squares 

df 
Mean 
Square 

F-value p-value  

Mean vs Total 9.83 1 9.83    

Linear vs Mean 0.2568 3 0.0856 2.38 0.1083  

2FI vs Linear 0.2756 3 0.0919 3.97 0.0327  

Quadratic vs 2FI 0.2854 3 0.0951 61.92 < 0.0001 Suggested 

Cubic vs Quadratic 0.0142 4 0.0035 18.22 0.0017 Aliased 

Residual 0.0012 6 0.0002    

Total 10.66 20 0.5331    

 
 
          
           The sequential model sum of squares table 
illustrates how the model fit becomes better as more 
addition of terms. Considering the estimated sequential 
model sum of squares, the highest order polynomial that 
has significant additional terms and a non-aliased model 
were chosen as the best match.  The cubic polynomial 
was found to be aliased from the results of Table I, hence 
it cannot be used to fit the final model. Additionally, it was 
suggested that the quadratic and 2FI model suited the 

data the best, which supported the adoption of the 
quadratic polynomial in this research. 
         The lack of fit test was performed for each response 
to determine how the quadratic model describes the 
basic  variation in the experimental data. Prediction 
cannot be made using a model with a considerable lack 
of fit. Table II displays the findings of the calculated lack 
of fit test for shock resistance. 

 
 
                      Table II: Lack of fit test for shock resistance 

 

Source 
Sum of 
Squares 

df 
Mean 
Square 

F-value p-value  

Linear 0.5764 11 0.0524 1.89 0.2492  

2FI 0.3007 8 0.0376 2.47 0.1628  

Quadratic 0.0154 5 0.0031 0.1640 0.9924 Suggested 

Cubic 0.0012 1 0.0012 0.0341 0.9667 Aliased 

Pure Error 0.0000 5 0.0000    

 
 
The model statistics based on the model sources that 
were derived for the response to the shock resistance are  

displayed in Table III. 

 
                   Table III: Model summary statistics for shock resistance 

 
Source Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 0.1898 0.3082 0.1785 -0.1296 0.9411  

2FI 0.1521 0.6391 0.4725 0.1513 0.7071  

Quadratic 0.0392 0.9816 0.9650 0.8600 0.1166 Suggested 

Cubic 0.0140 0.9986 0.9956 0.6908 0.2576 Aliased 
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           Each entire model's r-squared, standard deviation, 
predicted r-squared, adjusted r-squared and predicted 
error sum of square (PRESS) statistics are displayed in 
the summary statistics of model fit. The ideal criteria for 
identifying the optimal model source are a low standard 
deviation, R-Squared close to one, and a relatively low 

PRESS. The quadratic polynomial model was chosen for 
this investigation since, according to the results of Table 
III, it was indicated while the cubic polynomial model was 
aliased. Table IV shows the goodness of fit statistics to 
verify the quadratic model's suitability based on its 
capacity to maximize shock resistance

. 
 
 
                     Table IV: GOF statistics for  shock resistance 

 
Std. Dev. 0.0392 R² 0.9816 

Mean 0.7010 Adjusted R² 0.9650 

C.V. % 5.59 Predicted R² 0.8600 

  Adeq Precision 23.6150 

 
 
         It is thought that there is a reasonable agreement 
when the difference between the Predicted R² of 0.8600 
and the Adjusted R² of 0.9650 is less than 0.2, indicating 
reasonable agreement. Adeq Precision, which measures 
the signal-to-noise ratio, should ideally be at least 4. With 
a ratio of 23.615, it suggests a strong signal. This model 
can effectively guide design decisions within the specified 
area. A comparison between the projected values and the 
actual values was done in order to find values or 
groupings of values that the model would not have been 

able to detect readily. This comparison is shown in Fig. 
1a, with a special emphasis on shock resistance. A 
Cook's distance plot was produced for various responses 
in the experimental data to look for probable outliers. 
Cook's distance estimates how the removal of a certain 
point can affect the regression. In order to rule out 
outliers, points with extremely high distance values 
relative to the rest should be given more attention. Fig. 1b 
shows the Cook's distance plot for shock resistance (SR). 

 
 

 
         Fig. 1a: Plot of Predicted Vs Actual for SR                                      Fig. 1b: Generated cook’s distance for  SR. 
 
The graph in Fig. 1a shows how the dots are closely 
grouped around the fitted line. This shows that the model 
is successful in correctly predicting the bulk of the data 
points. The Cook's distance plot, on the other hand, in Fig. 
1b, its lower bound is 0.00 and its upper bound is 1.00. 
Outliers are considered experimental values that are 
outside the expected range and require further 
examination. The results of Fig. 1a and 1b implies that the 

estimated residuals follow a distribution that is roughly 
normal. This is a good sign because it shows that the 
constructed model's accuracy and propensity for 
prediction are sufficient. Fig. 1c represents 3D surface 
plots to analyze the effects of voltage and current on 
shock resistance while Fig. 1d surface plots were created 
to explore the effects of shock resistance on gas flow rate 
and current.
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       Fig. 1c : Effect of current and voltage on  SR                                Fig. 1d: Effect of current and flow rate on  SR. 
 
         The 3D surface plots in Fig. 1e were designed to 
investigate the temperature impacts of voltage and gas 
flow rate. The contour plots of the temperature response 

variable versus the ideal voltage and gas flow rate are 
shown in Fig. 1f. 

 
 

 
Fig. 1e: Effect of voltage and gas flow rate on  SR                          Fig. 1f: Predicting SR using contour plot 
 
            Table V displays the optimal outcomes of the numerical optimization. 
 
 
                Table 5  Optimal outcomes 
 

S/N 
 
 

Voltage 
 

Gas flow rate 
 

Shock Resistance  

1 160.000 21.280 14.667 0.729 Selected 

2 160.000 21.286 14.676 0.730  

3 160.000 21.268 14.662 0.730  

4 160.000 21.303 14.690 0.730  

5 160.001 21.259 14.650 0.729  
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3.2 Modelling of the Shock Resistance using Artificial Neural Network (ANN) 
 
          The examination also held significant value in 
establishing the precise mathematical link between the 
response (shock resistance) and the current, voltage, and 
gas flow rate are examples of input variables. In the 
pursuit of attaining an optimal network structure that 
provides the highest precision in comprehending the 
input-output data correlation, two pivotal aspects were 
taken into account. The initial aspect encompassed the 
selection of the most accurate training algorithm or 
learning rule. Secondly, the determination of the number 
of hidden neurons within the network was also 
contemplated. Guided by these considerations, a variety 
of training algorithms and different quantities of hidden 
neurons were chosen and subjected to experimentation. 
The aim was to identify the optimal training algorithm and 
the optimal number of hidden neurons that collaboratively 
yield the most accurate and efficient network 
configuration. However, this selection is based on the 
assessment of r2 and MSE values. For the analysis of the 
Artificial Neural Network, MATLAB R2022a was 
employed. The data was initially saved in a specific folder 
within MATLAB before being normalized via conversion 
into a numeric matrix. This process automatically 
established the dataset range, and the import selection 
was employed to import the data into the MATLAB 
environment. The Levenberg-Marquardt Back 
Propagation training algorithm, known as the improved 
second-order gradient method, has been identified as the 
optimal learning rule and subsequently applied in 
formulating the network structure. Specifically, the 
Levenberg-Marquardt Back Propagation training  

algorithm, configured with 38 hidden neurons, was 
engaged to train a network composed of one (1) output 
processing element and three (3) input processing 
elements (PEs). The chosen quantity of hidden neurons 
was set at 12 neurons per layer, and the performance of 
the network was monitored through coefficients of 
determination (r2) and Mean Squared Error (MSE). Within 
the network architecture, the input layer employed the 
hyperbolic tangent (tan-sigmoid) transfer function for 
calculating the layer output from input data, while the 
output layer utilized the linear (purelin) transfer function. 
The process of network generation involved partitioning 
the input data into training, validation, and testing sets. In 
this investigation, 70% of the data was allocated for 
network training, 15% for validation, and the remaining 
15% for testing. The evaluation of the network's 
performance extended over a maximum of 1000 training 
epochs. The network was trained with the "trainlm" 
function, which adjusts weight and bias parameters via 
Levenberg-Marquardt optimization. This function is 
acknowledged as one of the quickest back propagation 
algorithms are often regarded as the preferred supervised 
algorithm in the toolbox. Yes, it does however, need 
additional memory compared to other algorithms. By 
implementing these parameters and configurations, an 
optimal neural network structure was established and 
visually represented in Fig. 1g. This identical network 
architecture was utilized to predict shock resistance as a 
singular response variable, with three input variables 
being employed. 

 
                                   Fig. 1g: Artificial neural network architecture 
 
      The Artificial Neural Network architecture is 3-12-1, 
the network diagram generated for the prediction of shock  
 
 
 
 
 
 
 
 
 
 
 
 

resistance using the back propagation neural network is 
presented in Fig. 1h 
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                          Fig. 1h: Model summary for predicting shock resistance 
 
           The network performance was determined to be 
0.313 using the network training diagram of Figure 9. Out 
of six (6) validation checks, four (4) were recorded. This 
outcome was anticipated, as the normalization of raw data 
effectively addressed the issue of weight bias. Fig. 1i 
displays a performance evaluation plot that depicts the 
development of training, validation, and testing. The 

network's effectiveness during each of these stages is 
shown visually in this plot. The training state is shown in 
Fig. 1j, which provides details on important variables like 
the gradient function, training gain (Mu), and validation 
tests. The training process and its connected aspects are 
clearly understood thanks to this thorough representation. 

 

 
Fig 1i: SR Performance curve of trained network                  Fig. 1j: Neural network training state for predicting SR 
 
           Back propagation serves as a fundamental 
technique utilized in artificial neural networks for 
computing the contribution of error from each neuron 
subsequent to a batch of data training. Technically, the 
neural network undertakes the computation of the 

gradient of the loss function, thereby elucidating the error 
contributions originating from the chosen neurons. A 
lower error signifies better performance. The computed 
gradient value of 00000000003809, as observed in Fig. 
1j, indicates the minute nature of error contributions  
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associated with the selected neurons.In the realm of 
training the neural network, momentum gain (Mu) 
operates as a control parameter for the algorithm's 
functionality. It characterizes the training gains, and its 
value is imperative to remain below unity. Notably, 
momentum gains of 0.0000001 underscore a network that 
exhibits elevated potential in predicting shock resistance 

(SR). Fig. 1k showcases the regression plot, illustrating 
the interrelation between the input variables (current, 
voltage, and gas flow rate) and the designated target 
variable (shock resistance). This image is accompanied 
with a visual representation of the neural network's 
training, validation, and testing progress, providing a 
complete picture of the network's performance. 

 
 
 

            
    Fig. 1k: Regression plot showing the progress of training, validation and testing 
 
           It was determined that the network had been 
correctly trained and could be used to predict shock 
resistance based on the estimated values of the 
correlation coefficient (R) as seen in Fig. 1k. 
 
4. DISCUSSION 
 
           This research employed two distinct 
methodologies, namely the Response Surface 
Methodology and the artificial neural network approach, 
to effectively model and forecast shock resistance as a 
critical factor contributing to the enhancement of 
Structural Integrity in Pipeline Weldment. The connection 
between the input parameters and the resultant 
responses was found to possess a quadratic nature. The 
findings of the sequential sum of square test, which 
repeatedly indicated the quadratic model as the best 
option due to its noticeably low p-value of 0.0001, 
confirmed this claim. Evaluation of the model summary 
statistics for all the responses unveiled R2 values 
hovering around 90%. This substantial R2 value 
underscores the robustness of the models in capturing 
and explaining the variations in the responses. The 
models also demonstrated a non-significant lack of fit, as 
shown by a p-value of 0.005. These findings collectively 
underscore the efficacy and reliability of the developed 
models. The consistently high R2 values of > 0.9 across 
all models further highlight the remarkable predictive 
capacity of the models. This exceptional R2 value 

accentuates the strength of the models in accurately 
forecasting the response values based on the chosen 
input variables. Notably, the achieved results also 
demonstrated that the variance inflation factor (VIF) 
remained at the anticipated level of 1.00, affirming the 
validity of the model. Design professionals decided that 
this alternative, which has a desirability rating of 0.918, 
was the best. The research demonstrates that when 
welding mild steel plates with tungsten inert gas, though 
artificial neural networks precisely predict the 
aforementioned reactions, the response surface 
methodology predicted better results. 
 
 
5. CONCLUSION 
 
           The durability and operational lifespan of an 
engineered structure heavily rely on its capacity to 
withstand shock forces. Within the scope of this study, we 
have embarked on the development of numerical models 
utilizing both the artificial neural network (ANN) and 
Response Surface Methodology (RSM) methods. The 
primary goal was to optimize and predict shock 
resistance, a critical factor, by incorporating input 
variables such as current, voltage, and gas flow rate. To 
structure our experimental approach, we harnessed the 
central composite design, facilitated by design expert 
software (version 13.0). Through the application of RSM 
analysis, we successfully identified optimal solutions.  
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These solutions were determined to involve a gas flow 
rate of 14.667 liters per minute, a voltage of 21.280 volts, 
and a current of 160.000 amps. This combination led to 
the creation of a welded joint characterized by a shock 
resistance of 0.729. A strong desirability rating of 0.918 
was attached to this accomplishment, highlighting the 
brilliance of the results attained. Additionally, we engaged 
an artificial neural network model in predicting the output 
parameters, which were subsequently compared with the 
predictions of the RSM methodology. Following 
meticulous analysis, we made a significant observation: 
the response surface methodology proved to be the most 
effective forecasting model, triumphing over the artificial 
neural network. This determination was grounded in the 
fact that RSM exhibited a higher coefficient of 
determination, solidifying its efficacy in this context. 
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