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Abstract In welding processes, achieving the desired weld quality involves a multitude of factors that can interact with 
each other, thus, impacting key parameters like the cutting force. Some factors hold more significance, while the 
influence of others is minimal. Determining the optimal combination of these factors to maximize cutting force is a 
challenging endeavor. This study is focused on the prediction and optimization of machining parameters for welded 
joints, including depth of cut, cutting speed, and feed rate, in relation to cutting force. To accomplish this, the study 
utilizes both the Response Surface Methodology (RSM) and Artificial Neural Network (ANN). The central composite 
design was meticulously created using Design expert software (version 13.0). The RSM analysis produced a coefficient 
of determination of 0.9961. Additionally, an artificial neural network model was employed to predict output parameters 
and was compared with the RSM approach. The training of the neural network utilized 70% of the data for training, 15% 
for validation, and the remaining 15% for testing. The training process extended for a maximum of 1000 epochs, resulting 
in a coefficient of determination of 0.87834. The study's findings indicate that, in this specific context, the Response 
Surface Methodology (RSM) outperformed the Artificial Neural Network (ANN) as a predictive model. 
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1.  Introduction 
 
      The machining sectors are continuously searching 
for current methods to lessen the forces produced while 
on metal cutting, increase tool life, and boost surface 
quality [1]. Deformation of elastic workpieces and the 
injection of residual subsurface tension when cutting can 
reduce the precision of machining. It is vital to have a 
better understanding of how cutting circumstances and 
tool wear affect finished surfaces and their geometrical 
flaws so as to forecast the effects of changing cutting 
forces and surface integrity [2]. Cutting forces play a 
critical role in machining operations, affecting tool wear, 
surface quality, and overall machining efficiency. 
Predicting and optimizing cutting forces is essential to 
extend tool life and enhance machining processes [3]. 
Different materials exhibit unique machining 
characteristics, necessitating specific approaches for 
predicting and optimizing cutting forces [4]. In real-world 

applications, optimizing cutting forces often involves 
balancing conflicting objectives like minimizing tool wear, 
enhancing material removal rate, and reducing energy 
consumption. Multi-objective optimization techniques, 
including evolutionary algorithms, are used to find Pareto-
optimal solutions. Understanding the wear mechanisms 
that occur during machining is crucial for predicting and 
optimizing cutting forces. Wear modes include flank wear, 
crater wear, adhesion, abrasion, and diffusion. Tool 
material selection significantly impacts tool life and cutting 
forces [5]. Research in this area explores the 
development of advanced tool materials like ceramics, 
carbides, and coatings to enhance tool performance. 
Techniques to machine learning can be effective tools for 
machining optimization procedures. The cutting process's 
machinability and long-term viability can both be improved 
by longer tool lives. Cutting fluids should ideally be used  
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to extend tool life. The bulk of cutting fluids, however, are 
not biodegradable and present serious environmental 
risks [6]. [7] developed according to the cutting speed 
(Vc), feed rate (f), and depth of cut (ap), Regression 
frameworks based on the Gaussian process are used to 
estimate 3 factors for cutting, including the cutting force 
(Fc), surface roughness (Ra), and tool lifespan (T), in fast 
rotating operations. In the work by [8], the life and cutting 
force coefficients (CFCs) was established by assessing 
the machinability performance of additives (phosphate 
ester (P-ester), mineral oil, and dialkyl pentasulfide). 
Innovative micro-geometry is crucial to the process of 
machining. Cutting edges with the proper size and form 
increase process dependability, tool life, and wear 
resistance [9]. When cutting materials, tool shape has a 
big impact on it [10]. [11] created a model to mimic the 
force of cutting and area to enhance the power skiving 
process's machining precision and tool life. Internal gear 
power skiving involves complicated interactions between 
the workpiece's and tool's relative movement and the 
efficient rake angle, chip thickness, and direction of 
cutting. [12] looked into the force of cutting, roughness of 
the exterior, and tool life to increase the life of the tool and 
the surface quality that is worked on, which was a 
pressing issue in the superalloy based on iron twisting. 
[13] discovered that a rise in force affects the Workpiece-
Fixture-Machine-Tool-Cutting Tool (WFMC) system's 
productivity and longevity of the tool. Recent 
advancements in machining technology, including high-
speed machining, cryogenic machining, and sustainable 
machining, have led to new challenges and opportunities 
in predicting and optimizing cutting forces [14]. Predicting 
and optimizing cutting forces for enhancing tool life and 

machining efficiency is a complex and multidisciplinary 
field of research. It involves a combination of analytical, 
empirical, and computational methods, as well as an 
understanding of material properties, tool wear 
mechanisms, and optimization techniques [15]. Advances 
in this field contribute to more sustainable and cost-
effective machining processes across various industries. 
 
 
2.    Findings and Discussion 
 
      In accordance with the findings of this research, 
amount of input criteria, an experimental design was 
developed. The matrix was produced using specialized 
design software. The 2k factorial design and it made use 
of the CCD, or central composite design. The 2k factorial 
design is for any number of input parameters considered 
at 2 levels while the CCD is for any input variables 
deemed to be between levels 3 and 5. Using the design 
7.1 program, the central composite design for this 
investigation was created, it generated 20 runs for the 
experiment. These test runs included the results of the 
selected material, along with input and output parameters. 
Subsequently, Resp○nse Surface Methodol○gy (RSM) 
and an artificial neural network methods were utilized to 
analyze this matrix. The primary factors taken into 
account in this paper are cut depth, speed of cutting, feed 
rate and the results are the cutting force, chip size, chip 
removal rate and tool life. The free literature that was 
strategised offered a variety of values for the procedure 
factors, every factor has two tiers that make up the peak 
and low. 

 
 
                                                  Table 1: Input variables and their tiers 

 
 
 
 
 
 
 
 
 
 
 
 
Modelling and Optimization utilizing Response 
Surface Methodology (RSM) 
 
      An effort is made in this research to create a second 
order mathematical relationship between specified input 
factors, which consist of the rate of feed, cutting depth, 
and speed coupled with the response variable, namely;  
 
 

 
cutting force employing the RSM (response surface 
methodology). The optimization model's goal was to 
maximize cutting force. 
To check for model suitability, the squares' sequential 
sum is required, the consecutive square sum for cutting 
force response as seen in Table 1. 
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Factors Symbol Coded value Coded value 

  Low (-1) Peak (+1) 

Depth of cut D 0.009 2.000 

Cutting speed S 149.4 275.5 

Feed rate F 0.001 2.51 



 
 

 

            Table 1 Sum of Squares in a Sequential Model cutting force 

 

Origin Sum of Squares df Avg Square 
F-

value 
p-value  

Avg vs Total 2.672E+07 1 2.672E+07    

Linear vs Avg 2724.76 3 908.25 0.4963 0.6900  

2FI vs Linear 17572.37 3 5857.46 6.50 0.0063  

Quadratic vs 2FI 11583.86 3 3861.29 310.88 < 0.0001 Suggested 

Cubic vs 
Quadratic 

96.74 4 24.19 5.28 0.0361 Aliased 

Residual 27.46 6 4.58    

Total 2.675E+07 20 1.337E+06    

 
 
      Table 1 illustrates the Sequential Model Sum of 
Squares cutting force in which selecting the ‘Cubic vs 
Quadratic’ model, indicates that the model is not aliased, 
but rather the ‘Quadratic vs 2FI’ was suggested. 

To further check for the most suitable model for Cutting 
Force, a lack of fit test was done and a model with the 
most insignificant improper fit is selected.  The improper 
fit table for the Cutting Force as displayed in Table 2. 

 
                 Table 2: Lack of Fit Tests for cutting force 

 

Origin 
Sum of 
Squares 

df 
Avg 
Square 

F-value p-value  

Linear 29259.61 11 2659.96 638.39 < 0.0001  

2FI 11687.24 8 1460.90 350.62 < 0.0001  

Quadratic 103.37 5 20.67 4.96 0.0517 Suggested 

Cubic 6.63 1 6.63 1.59 0.2628 Aliased 

Pure Error 20.83 5 4.17    

 
 
      From Table 2, The improper fit test further suggested 
the Quadratic Model the p-value being 0.0517. To further 
check for the model suitability , the model statistics in brief 
for the Cutting Force was evaluated; the model with the 

highest coefficient of determination is preferable. The 
summarized data for the cutting force model is indicated 
in Table 3. 

 
 
                             Table 3 :Model Summary Statistics cutting force 
 
 
 
 
 
 
 
 
 
      Table 3 describes the Model Cutting force statistics in 
summary, in which the R² of the Quadratic model was 
suggested and that of the cubic aliased. The Variance 
Analysis for the model was estimated to further examine 
 
 
 
 

 the relevance of the quadratic model, the variance 
analysis (ANOVA) was done for Cutting Force. This as 
seen in table 4. 
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Origin 
Std. 
Dev. 

R² 
Adjusted 
R² 

Predicted 
R² 

PRESS  

Linear 42.78 0.0851 -0.0864 -0.5337 49087.82  

2FI 30.01 0.6342 0.4653 0.1157 28303.78  

Quadratic 3.52 0.9961 0.9926 0.9740 830.88 Suggested 

Cubic 2.14 0.9991 0.9973 0.9534 1491.42 Aliased 



 
 

 
 
 
                 Table 4: ANOVA for a quadratic model's cutting force 
 

Origin 
Sum of 
Squares 

Df 
Avg 

Square 
F-value 

p-
value 

 

Model 31880.99 9 3542.33 285.20 
< 

0.0001 
relevant 

A-depth of cut 3.59 1 3.59 0.2889 0.6027  

B-cutting speed 129.45 1 129.45 10.42 0.0090  

C-feed rate 2591.72 1 2591.72 208.66 
< 

0.0001 
 

A B 10.13 1 10.13 0.8152 0.3878  

A C 17391.12 1 17391.12 1400.17 
< 

0.0001 
 

B C 171.13 1 171.13 13.78 0.0040  

A² 2203.37 1 2203.37 177.40 
< 

0.0001 
 

B² 7959.91 1 7959.91 640.86 
< 

0.0001 
 

C² 3404.55 1 3404.55 274.10 
< 

0.0001 
 

Residual 124.21 10 12.42    

Lack of Fit 103.37 5 20.67 4.96 0.0517 not relevant 

Pure Error 20.83 5 4.17    

Cor Total 32005.20 19     

 
 
      This algorithm's F-value of 285.20 from Table 4 
indicates the algorithm is relevant. An F-value this high 
could occur because 0.01% of any given moment to 
noise. When the P-value is less 0.0500, algorithm items 
are thought to relevant. In this situation, key algorithm 
items are B, C, A C, B C, A2, B2, and C2. Should the figure 
surpass 0.1000, algorithm terms are not relevant. If your 
algorithm is filled with extraneous items (except those 
needed to uphold order), algorithm reduction could make 

it better. The 4.96 Lack of Fit F-value indicates that 
there exists 5.17% probability that noise could generate a 
notable F-value for Lack of Fit. We don't want this since 
we desire the model to fit. It is concerning that this chance 
is so low (<10%). 
      To check for the strength of the model developed the 
goodness of fit statistics test is done based on the cutting 
force given in Table 5. 

 
 
                    Table 5: Goodness of Fit Statistics for Cutting Force 
 

Std Dev 3.52 R² 0.9961 

Avg 1155.80 Adjusted R² 0.9926 

C.V. % 0.3049 Predicted R² 0.9740 

  Adeq Precision 52.1865 

  
  
      From Table 5, varying by less than 0.2, the Predicted 
R2 of 0.9740 also the Modified R2 of 0.9926 are 
reasonably in agreement. With sufficient accuracy, the 
ratio of signal to noise is recorded. A proportion of at least 
four is optimal. A 52.187 ratio implies a reliable signal. 
Use this algorithm to move about the design space. 

To develop the optimal equation to improve the Cutting 
Force, the coefficient estimate is determined. The 
coefficient estimate statistics for Cutting Force is shown 
in Table 6. 
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                   Table 6: Coefficient Estimate Statistics for the Cutting Force 
 

Factor 
Coefficient 
Estimate 

df 
Standard 
Error 

95% CI 
Low 

95% CI 
High 

VIF 

Intercept 1190.79 1 1.44 1187.58 1193.99  

A-depth of 
cut 

0.5126 1 0.9537 -1.61 2.64 1.0000 

B-cutting 
speed 

-3.08 1 0.9537 -5.20 -0.9538 1.0000 

C-feed 
rate 

-13.78 1 0.9537 -15.90 -11.65 1.0000 

AB 1.13 1 1.25 -1.65 3.90 1.0000 

AC -46.62 1 1.25 -49.40 -43.85 1.0000 

BC -4.63 1 1.25 -7.40 -1.85 1.0000 

A² -12.36 1 0.9284 -14.43 -10.30 1.02 

B² -23.50 1 0.9284 -25.57 -21.43 1.02 

C² -15.37 1 0.9284 -17.44 -13.30 1.02 

 
 
      From Table 6, the coefficient estimate illustrates the 
projected shift in response to each unit shift in the value 
of the factor when every other factor are held fixed. The 
average response across every test is the intercept in an 
orthogonal design. With respect to the factor values, the 
coefficients change the average nearby. In the case of 
orthogonal factors, the VIFs are 1. In the case of multi-

colinear components, the VIFs exceed 1. The VIF 
enhances the degree of the component link's intensity. 
VIFs under 10 are typically seen as appropriate. 
To show the model is suitability for the data with respect 
to Cutting Force, a normal plot of residuals for Cutting 
Force appears in Fig. 1. 

 
 
 

 
 
                     Figure 1: Normal Plot of Residuals for Cutting Force 
 
      The straight line will run between the locations when 
the residuals in the chart are of normal probability are 
dispersed normally. Even a common data set is 
accompanied with a substantial scatter. The typical 
residuals cutting force plot revealed a moderate scatter 
indicating that the data is normal. 

To detect for the presence of mega patterns or expanding 
variance a plot of residuals and the predicted was 
produced for Cutting Force this as depicted in Figure 2. 
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                                Figure 2: Residual vs. Predicted Cutting Force Plot 
 
 
       For Cutting Force, as Figure 3 illustrates, the 
anticipated numbers are plotted against the real numbers 

for the purpose of detecting a value or collection of values 
that the model is having difficulties recog

nizing. 
 
 

 
 
                            Figure 3:  Plot of Predicted Versus Actual for Cutting Force 
 
 
      The dots are roughly near to the line of fit, as shown in Figure 3, indicating that the framework is capable of forecasting 
the majority of the data dots. 
      The cook's distance plot for Cutting Force was created to find any possible anomalies in the test results. When an 
outlier is eliminated from the analysis, the cook's distance is employed to calculate the amount that the regression will 
change. A spot that sticks out from the rest by having a very high distance value ought to be looked into. The cook's 
distance which was created for the Cutting Force is shown in Fig. 4. 
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                              Figure 4:  Cook Distance for Cutting Force 
 
      The Surface Plot in Figure 5 displays the impact of 
cutting force, cutting speed, and depth of cut. An increase 

in the cutting speed and depth of cut yields a 
corresponding increase in the cutting Force  

 
 

 
 
Figure 5   3D plot of cutting depth and speed on cutting force 
 
      The 3D Surface Plot in Figure 6 shows the 
relationship of the feed rate and depth of cut with the  

cutting force. 

 
 

 
                            Figure 9 3D plot of Feed rate and cut depth's impact on cutting force 
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     The 3D Surface Plot in Figure 7 illustrates the effect of  the feed rate and cutting speed with the cutting force.  
 
 

 
 
                     Figure 7:  3D plot Rate of feed and cutting speed's impacts on Cutting Force 
 
      The Surface Plot it demonstrates the rate of feed and 
cutting speed's impacts on Cutting Force reveals that 
increase in Rate of feed as well as speed of cut result in 
the increase of the Cutting Force. However, the speed of 
cut has a stronger influence on the Force of Cutting 
 
 
Modelling and prediction using Artificial Neural 
Network (ANN) 
 
      Twenty data arrays from experiments, obtained by 
reproducing the layout matrix from Central Composite 
Design, was employed for training the neural network 
model. The process of selecting and training the network 
structure is crucial for effective data modeling and 
prediction. Two key factors played a pivotal role in 
determining the optimal network architecture. Firstly, the 
choice of the most suitable training algorithm or learning 
rule was considered. Secondly, the determination of the 
ideal number of hidden neurons was crucial. To achieve 
this, a variety of training algorithms and numbers of 
concealed neurons were selected and evaluated to 
determine the training algorithm and the optimal count of 
hidden neurons that would result in the most precise 
network structure. 

       However, the selectivity is based on the r2 and MSE  

values. Matlab R2022a is used in the analysis for the 
Artificial neural network. The Levenberg Marquardt Back 
Propagation training algorithm, was employed to create 
the network architecture. In order to generate a network 
that has been developed employing the Levenberg-
Marquardt Back Propagation training technique, different 
numbers of hidden neurons were chosen. 27 neurons 
were designated as hidden neurons per layer, and the 
network's performance was tracked utilizing coefficient of 

determination (r2) and MSE. The network generation 
process divides the input data into three subsets: training 
data, validation data, and testing data. Specifically, 
network training required 70% of the data, network 
validation required 15%, and the remaining 15% was 
reserved to assess the network's efficiency. The training 
process continued for a maximum of 1000 epochs. The 
network was trained using the Trainlm algorithm, which 
revises the Levenberg-Marquardt optimization-based 
weight and bias values. Trainlm is known for its efficiency 
and speed in the toolbox, making it a recommended 
choice for supervised learning, even though it may require 
more memory than other algorithms. Figure 8 shows the 
network diagram created for predicting cutting force using 
a back propagation neural network, which is based on the 
Artificial Neural Network architecture 3-27-1. 
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                            Figure 8: The structure of an artificial neural network   
 
      Figure 9 shows the network training chart. From the 
chart, the network's performance was 1.18e+04. 
Validation checks of two (2) was recorded out of six (6). 

However, this is to be anticipated given that the raw data's 
normalization resolved the weight bias issue. 

 
 

 
 
                                   Figure 9: Model Summary for Cutting Force Prediction 
 
 
 
       Figure 10 displays a graph for performance analysis 
that illustrates the development of validation, testing, and  

training. 
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                                 Figure 10 A trained network's performance curve for forecasting of Cutting Force 
 
      The performance curve in Fig 15 shows no indication 
of overfitting. Additionally, a similar tendency was seen in 
the training, verification, and examination curve's 
behavior, which was anticipated given that the 
unprocessed data had already been balanced before 
usage. A key metric used to assess a network's training 

accuracy is lesser mean square error. An error value of 
1412.6024 at epoch 2 shows that a network may project 
the cutting force with an excellent level of precision. 
Figure 11 displays the training state, which displays the 
validation check, training gain (Mu), and gradient function. 

 
 

 
 
 
                           Figure 11: Training State of a Neural Network for Prediction of Cutting Force 
 
      Backpropagation is an approach employed in ANN to 
compute the influence of each neuron's mistake following 
a batch of data training. In essence, the neural network 
computes the gradient of the loss function to identify the 
error generated by the chosen neurons. In this context, 
lower error values are desirable. A computed gradient 

value of 1.995e-11, as depicted in Figure 11, shows that 
the erroneous effects of the chosen neurons are 
exceedingly minimal. Momentum gain (Mu) is a crucial 
controlling variable for the algorithm used in training the 
neural network. It governs the learning process, and its 
value must be less than one. A momentum gain of 1e-07  
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implies that the network is very capable of forecasting 
cutting force. The regression plot in Figure 12 illustrates 
the correlation with relation to the input factors (DOC, 

cutting speed, and feed rate) and the target factor (cutting 
force). It also tracks the progress of learning, verification, 
and testing during the neural network training process.

 
 

 
 
                         Figure 12: Regression Plot Demonstrating Training, Validation, and Testing Development 
 
 
      It was determined that the network had been correctly 
trained and could be used to forecast the cutting force 
based on the computed correlation coefficient (R) values 
shown in Figure 12. 
 
 
5. Conclusion 
 
      A machined engineering structure's cutting force has 
an impact on its usable service life. In this research, the 
development of numerical models using resp○nse 
surface methodology and ANN to enhance and forecast 
the cutting force, considering cut depth, speed of cutting, 
and feed rate as input factors. The experimental design 
adopted was the central design composite, which was 
generated employing the design 7.1 software the RSM 
analysis produced optimal solutions with depth of cut of 
0.400, cutting speed of 250.000, and rate of feed of 0.500 
to produce a machined structure with cutting force of 
1106.609, and this was obtained at a desirability value of 
0.973. The model of an ANN was also employed to 
foresee the output parameters and compared with the 
RSM methodology. From the results obtained the 
response surface methodology is selected as the better 
forecasting model over the ANN because it has a higher 
coefficient of determination. 
 
References 
 
[1] Zhang, Y., & Xu, X. (2021). Machine learning cutting 
force, surface roughness, and tool life in high speed 
turning processes. Manufacturing Letters, 29, 84-89. 

 
[2] Broderick, M., Turner, S., & Ridgway, K. (2021). 
Correlation between tool life and cutting force coefficient 
as the basis for a novel method in accelerated MWF 
performance assessment. Procedia CIRP, 101, 366-369. 
 
[3] Lv, D., Wang, Y., & Yu, X. (2020). Effects of cutting 
edge radius on cutting force, tool wear, and life in milling 
of SUS-316L steel. The International Journal of Advanced 
Manufacturing Technology, 111, 2833-2844. 
 
[4] Toubhans, B., Fromentin, G., Viprey, F., Karaouni, H., 
& Dorlin, T. (2020). Machinability of inconel 718 during 
turning: Cutting force model considering tool wear, 
influence on surface integrity. Journal of Materials 
Processing Technology, 285, 116809. 
 
[5] Knápek, T., Dvořáčková, Š., & Váňa, M. (2023). The 
effect of clearance angle on tool life, cutting forces, 
surface roughness, and delamination during carbon-fiber-
reinforced plastic milling. Materials, 16(14), 5002. 
 
[6] Velan, M. V. G., Shree, M. S., & Muthuswamy, P. 
(2021). Effect of cutting parameters and high-pressure 
coolant on forces, surface roughness and tool life in 
turning AISI 1045 steel. Materials Today: 
Proceedings, 43, 482-489. 
 
 
[7] Onozuka, H., Tayama, F., Huang, Y., & Inui, M. (2020). 
Cutting force model for power skiving of internal  
 

                                                    115.  Onyiriuka et al 



 
 

 
 
 
gear. Journal of Manufacturing Processes, 56, 1277-
1285. 
 
[8] Zhang, X., Zheng, G., Cheng, X., Li, Y., Li, L., & Liu, 
H. (2020). 2D fractal analysis of the cutting force and 
surface profile in turning of iron-based 
superalloy. Measurement, 151, 107125. 
 
[9] Ali, S., Abdallah, S., & Pervaiz, S. (2022). Predicting 
cutting force and primary shear behavior in micro-textured 
tools assisted machining of AISI 630: Numerical modeling 
and taguchi analysis. Micromachines, 13(1), 91. 
 
[10] Karpuschewski, B., Kundrák, J., Varga, G., Deszpoth, 
I., & Borysenko, D. (2018). Determination of specific 
cutting force components and exponents when applying 
high feed rates. Procedia CIRP, 77, 30-33. 
 
[11] Imani, L., Rahmani Henzaki, A., Hamzeloo, R., & 
Davoodi, B. (2020). Modeling and optimizing of cutting 
force and surface roughness in milling process of Inconel 
738 using hybrid ANN and GA. Proceedings of the 
Institution of Mechanical Engineers, Part B: Journal of 
Engineering Manufacture, 234(5), 920-932. 

[12] Gupta, M. K., Korkmaz, M. E., Sarıkaya, M., Krolczyk, 
G. M., Günay, M., & Wojciechowski, S. (2022). Cutting 
forces and temperature measurements in cryogenic 
assisted turning of AA2024-T351 alloy: An experimentally 
validated simulation approach. Measurement, 188, 
110594. 
 
[13] Xiao, Q., Yang, Z., Zhang, Y., & Zheng, P. (2023). 
Adaptive optimal process control with actor-critic design 
for energy-efficient batch machining subject to time-
varying tool wear. Journal of Manufacturing Systems, 67, 
80-96. 
 
[14] Jeyapandiarajan, P., & Xavior, A. (2019). Influence of 
cutting condition on machinability aspects of Inconel 
718. Journal of Engineering Research, 7(2). 
 
[15] Kuntoğlu, M., Aslan, A., Pimenov, D.Y., Usca, Ü.A., 
Salur, E., Gupta, M.K., Mikolajczyk, T., Giasin, K., 
Kapłonek, W. and Sharma, S., (2020). A review of indirect 
tool condition monitoring systems and decision-making 
methods in turning: Critical analysis and 
trends. Sensors, 21(1), p.108. 

 

116.  Glob. J. Environ. Sci. Techno                       

Published by GJEST                                                                             2024 


