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Abstract

The combination of digital twin (DT) technology with artificial intelligence (Al) has been recognised as a major change in
the way a predictive maintenance system works in Industry 4.0 manufacturing environments. This research presents a
hybrid DT architecture that uses real-time 10T sensor data and physics-based deep learning to forecast equipment
failures even before they occur. The system proposed makes it possible to less frequent interruptions of the production
process, to save the time of maintenance, and to adjust production changes automatically. The results of the verification
process, which was simulation and a CNC machining case study, confirm the effectiveness of the approach in achieving
higher predictive accuracy, lowering the frequency of maintenance tasks, and increasing operational efficiency.
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1. INTRODUCTION

Industry 4.0 has enabled a new era of manufacturing
systems to be much interconnected, intelligent, and
data-driven. The central idea of the transformation is the
digital twin (DT): a virtual, real-time reflection of a physical
object or a process that can, at the same time, monitor,
simulate, and optimise industrial operations (Emmert-
Streib, 2023). Fornari, et al. (2024) emphasize that the
expression “digital twin” is generally referred to a single
concept, however, there is significant doubt in its
definition and the level of the integration of the physical
and the virtual entities. Their survey indicates that the
actual twin implementations, i.e., the ones with two-way
data interchange and active simulation, are quite few;
nonetheless, the potential for manufacturing is enormous.
In the field of manufacturing maintenance, the use of DT
in conjunction with Al and ML can be compared to a
paradigm shift. Predictive maintenance (PdM) through
DT/Al integration enables industry workers not only to
detect faults but also to anticipate degradation routes and
calculate remaining useful life (RUL) of the parts to be
able to avoid the occurrence of lethal failures (Chen et al.,
2023). Murtaza et al. (2024) performed a systematic

review of DT and PdM technologies and discovered that
companies are more and more disposed to abandon the
strictly reactive or scheduled maintenance in favour of
data-driven, condition-based strategies. This
transformation results in higher system reliability, less
unplanned downtime, and maintenance costs
optimization. However, it still poses considerable
difficulties to convert this potential into an industrial reality.
It is essential that parts, sensor networks, communication
protocols, cloud/edge computing layers, and advanced
analytics be smoothly integrated for a successful
implementation of DT-enabled PdM. Issues like data
heterogeneity, latency, cybersecurity, interoperability of
legacy systems, and organizational readiness that have
been addressed by the research of Chen et al., 2023, are
still viable obstacles to the implementation. Furthermore,
Fornari, et al. (2024) mentioned that despite the fact that
the concept of a DT is very clear, there are very few
empirical studies which have demonstrated mature, fully
integrated twins in manufacturing, thus suggesting a gap
between theory and industrial practice. To this point, the
latest academic work highlights the necessity of hybrid
modelling frameworks that combine physics-based
simulation with data-driven learning and thus increase the



predictive fidelity and the adaptability of the system under
the variability of real world. To address this, hybrid
approaches such as Physics-Informed Neural Networks
(PINNSs) integrate physical laws with data-driven learning,
enhancing generalization and trustworthiness (Lee,
Bagheri, & Kao, 2023; Sensors Editorial Board, 2024).
Such hybrid approaches not only recall the strategic
significance of DT-driven PdM as one of the technical
innovations but also a complete facilitator of smart,
resilient and sustainable manufacturing ecosystems.
Addressing these limitations requires  modular
frameworks encompassing distinct data acquisition,
modelling, and decision-making layers to ensure system
flexibility and interoperability (Abayadeera et al., 2024).
The shift towards cloud—edge computing architectures
and Industrial Internet of Things (IloT) infrastructures has
further expanded the scalability of PdM, allowing real-time
local analytics combined with cloud-based long-term
trend prediction (Zonta et al., 2022). The fusion of DT and
Al has given rise to intelligent, self-learning, and
autonomous maintenance systems capable of continuous
synchronization  between  physical and virtual
environments (Fuller, Fan, Day, & Barlow, 2022). This
integration supports closed-loop maintenance cycles,
where operational data continuously update the digital
model while Al-driven insights optimize system behaviour
in real-time (Qi & Tao, 2023). Nevertheless, challenges
such as data interoperability, model transparency, and
computational demands remain substantial (Pan et al.,
2023). To overcome these barriers, recent research
promotes human-centric and sustainable digital twin
ecosystems, aligning with the Industry 5.0 vision that
emphasizes ethical, interpretable, and energy-efficient Al
collaboration (European Commission, 2023; Lee et al.,
2023). While existing predictive maintenance models
have been rapidly improved, they still show some
significant limitations. Most of them are dependent on
non-changing or past data and do not have the capability
of real-time adaptive learning. Additionally, the
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connection between digital twins and different types of loT
devices is a matter that has not been sufficiently solved
(Nunes et al., 2023). As a result, manufacturing systems
are facing the problem of late detection of faults, isolated
data, and unplanned downtimes that are heavy on the
budget. Therefore, an urgent demand exists for an
interoperable, adaptive, and Al-powered digital twin
framework able to perform failure prediction in real-time
and maintenance optimisation in a range of varied
industrial settings. The main purpose of this investigation
is the creation and verification of a digital twin-driven
predictive maintenance framework for intelligent
manufacturing systems. This study is a methodological
and empirical contribution to the digital transformation of
the manufacturing industry and is limited to the
mechanical manufacturing sector and the use of
equipment (e.g., CNC machines). The enabled system
promotes data interoperability, prediction accuracy, and
efficiency of operations; thus, it is in line with the Industry
5.0 concept, which is centred on human, intelligent, and
eco-friendly production (Lee et al., 2023).

2. METHODOLOGY

This research utilizes a mixed-method design that
blends quantitative simulation-based modeling with
gualitative system evaluation to create and confirm a
Digital Twin (DT)-driven predictive maintenance
framework for smart manufacturing systems. The method
comprises the use of a physics-based model, machine
learning algorithms, and realtime data analytics to not
only anticipate machine failures but also to devise
maintenance strategies optimization. The reason for
opting a mixed-method design is that it can capture the
exactness of the computational quantitative analysis as
well as the contextual industrial processes understanding.
Figure 1 shows the conceptual framework of the digital
twin-driven predictive maintenance methodology.



80. Spr Int. Eng. Res J.

Phase 1: Data Acquisition
Sensor integration (vibration, temperature, etc.)
Real-time data streaming via 10T

Phase 2: Digital Twin Modelling
Physics-based simulation (MATLAB/Simulink)
Virtual-physical synchronization via MQTT

Phase 3: Al-Based Predictive Maintenance
LSTM + Physics-Informed MNeural Networks
Fault detection, RUL estimation

Phase 4: Validation & Optimization
Simulation and case study testing
Performance metrics: RMSE, MAPE, Fl-score

Figure 1. Conceptual framework of the digital twin-driven predictive maintenance methodology

2.2 Data Collection and Preprocessing

Initially, the data encompass both the live and the
historical recordings. The data was taken from a smart
manufacturing testbed that simulates the CNC machines,
robotic manipulators, and conveyor systems, all of which
are loT sensor-equipped. The data types are vibration
signals, acoustic emissions, temperature, and energy
consumption. The above parameters are the most

frequently used ones for fault diagnosis and residual life.
Part of the data preprocessing is noise removal through
wavelet denoising, feature scaling by min-max
normalization, and outlier detection by the Isolation Forest
algorithm, which is a method of improving model accuracy
and stability.

The Table 1 represents a brief description of the main
parameters utilized in the research, the sensor types, and
the sampling rates that are related to them.

Table 1: Data Parameters and Acquisition Specifications

Sampli

ng

Parameter Sensor Type Rate Measurement Range Purpose
Vibration Accelerometer 10 kHz +16 g Fault detection
Temperature Thermocouple 1Hz 0-200 °C Overh_ea_ltmg
prediction
Acoustic Emission Microphone 50 kHz 0-120 dB Crack detection
Energy Consumption Power Meter 0.1 Hz 0-10 kW Efficiency tracking

2.3 Digital Twin Model Development

The Digital Twin will be constructed using a hybrid
modeling approach that couples a physics-based
simulation model (developed in MATLAB Simulink) with
data-driven learning components implemented in Python
(TensorFlow and PyTorch). The DT mirrors the physical

production line, continuously updating its parameters
using real-time data through an MQTT protocol interface.
To ensure interoperability, the architecture follows the
ISO 23247 standard for digital twins in manufacturing,
supporting  multi-layered communication  between
Physical Assets (PA), Virtual Models (VM), and Analytics
Modules (AM) (ISO, 2023). The DT incorporates a state



estimator for sensor fusion and a diagnostic agent for fault
classification using convolutional neural networks
(CNNs). A feedback loop enables the twin to simulate
maintenance interventions and assess their impact on
system performance before actual implementation.

2.4 Al-Powered Predictive Maintenance Algorithm

The predictive maintenance algorithm combines Long
Short-Term Memory (LSTM) networks for time-series
forecasting with Physics-Informed Neural Networks
(PINNSs) for system dynamics modeling. The hybrid model
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enhances prediction accuracy by embedding physical
laws into the learning process. Model training uses 80%
of the dataset for training, 10% for validation, and 10% for
testing. The loss function integrates both mean squared
error (MSE) and physics-based regularization terms to
penalize physically inconsistent predictions.
Hyperparameters are optimized using the Bayesian
Optimization techniqgue to balance computational
efficiency and model accuracy. Figure 2 shows the
schematic of the hybrid Al-driven predictive maintenance
model.

Real-Time Sensor Data (10T}
(Vibration, Temperature, Acoustic Emission, Energy)

Data Preprocessing Layer
- MNoise Filtering (Wavelet Denoising)
- Normalization & Qutlier Detection

Al Model Integration Layer
- LSTM Network for Temporal Pattern Learning
- Physics-Informed Neural Network for System Dynamics
- Hybrid Output: Failure Probability & RUL Estimation

Digital Twin Feedback and Optimization
- Simulation of Maintenance Scenarios
- Update of Twin Parameters via MQTT Protocol
- Adaptive Maintenance Scheduling

Figure 2. Schematic of the hybrid Al-driven predictive maintenance model

The validation stage utilizes simulation-based and
real-world methods. The effectiveness of the predictive
maintenance system is measured through a set of
standard metrics, namely Root Mean Square Error
(RMSE), Mean Absolute Percentage Error (MAPE),
Precision, Recall, and F1-score; most of which have been
applied to assess model efficiency and generalization

capability. Furthermore, a comparative analysis is
performed with benchmark models (conventional ML
models such as Random Forest and Support Vector
Machine) to examine the relative gains in accuracy and
stability. Table 2 shows the evaluation metrics along with
their calculation formulas.
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Table 2: Model Evaluation Metrics

Metric Formula Description

RMSE VE(yi - §i)?/n Measures overall predictive deviation

MAPE (1/n) £ (yi = ¥i)lyi

Precision TP /(TP + FP) Accuracy of positive fault predictions

Recall TP /(TP + FN) Completeness of fault detection

Fl-score 2 x (Precision x Recall) / (Precision + Recall) Balances precision and recall in classification

A sensitivity analysis will be conducted to determine
how much the quality of the data and the parameters of
the model will affect the accuracy of the prediction. In fact,
a case study of an industrial manufacturing dataset
(ssuch as NASA Turbofan Engine Degradation Dataset)
will be used for external validation and cross-comparison.
The research presented in this document adheres to the
ethical standards typical of data management and
industrial experimentation. All data sources involved in
the study will be anonymized, and network security
protocols will be put in place to prevent unauthorized
access to the digital twin and the associated Al models.
In addition, to ensure that data is handled in a responsible
manner and protected, the research is in line with the
ISO/IEC 27001 information security standards as well as
the EU GDPR regulations.

3. RESULTS AND DISCUSSION

Using TensorFlow/Keras Al modelling tools, Python
code was developed in conjunction with
MATLAB/Simulink for physics-based simulations to
implement the proposed Digital Twin (DT)-driven
predictive maintenance framework. The hybrid model
integrates Long Short-Term Memory (LSTM) networks

with Physics-Informed Neural Networks (PINNs) to
leverage the strengths of both data-driven and physics-
based approaches, thereby enhancing the accuracy of
CNC machine tool wear prediction and estimating the
Remaining Useful Life (RUL) within a CNC machining
system. Data acquisition was achieved by streaming
sensor data (vibration, temperature, acoustic emission,
and energy consumption) from a simulated industrial
manufacturing environment. These data were then
preprocessed to remove noise, normalize readings, and
eliminate outliers, following established methodologies.
The research was executed in three key stages: Hybrid
model training, where 80% of the data were used for
training, 10% for validation, and 10% for testing; Digital
twin synchronization, achieved through the MQTT
protocol to facilitate real-time updates of the virtual
models; and Predictive maintenance evaluation, during
which the performance of the hybrid Al-physics model
was assessed and compared against baseline models
such as Random Forest and standard LSTM to validate
its effectiveness in predictive maintenance and real-time
decision-making. Performance of the hybrid model was
measured using RMSE, MAPE, precision, recall, and F1-
score. In Table 3, the performance of the hybrid model is
benchmarked against that of the baseline models.

Table 3: Comparative Predictive Performance Metrics

Metric Random Forest LSTM Hybrid Al-PINN (Proposed)
RMSE 11.9 78 41

MAPE (%) 18.5 12.2 53

Precision (%) 82.1 88.4 92.6

Recall (%) 79.3 85.7 90.2

F1-Score (%) 80.7 87.0 914

The hybrid AI-PINN model outperformed both
conventional LSTM and Random Forest models across
all metrics. Embedding physics-based constraints
enabled more accurate predictions of RUL and fault
probability, particularly under variable operational
conditions, reducing overfitting and enhancing

generalization. Moreover, Figure 3 shows the
maintenance schedule that was optimized from the hybrid
model. A deep learning-based strategy for the system has
decreased the overdone parts of the interventions to the
level of the preventive schedules for the same reliability
of the system.
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Time

Source: Researcher’s Implementation (2025)

Figure 3. Optimized Maintenance Schedule Vs. Preventive Maintenance Intervals

3.1.1 Case Study: CNC Machining System

A case study was conducted on a simulated CNC
machining line equipped with four critical components:
spindle, servo motor, hydraulic system, and conveyor
system. Sensor data from each component was
processed through the hybrid AI-PINN framework. Key
findings include:

1. RUL Estimation Accuracy: The hybrid model
achieved +5% deviation from actual RUL values across
all components, outperforming standard LSTM by
approximately 15%.

2. Maintenance Efficiency: Downtime was
reduced by 36.8% compared to conventional preventive
strategies, translating into a projected operational cost
reduction of ~25%.

3. Anomaly Detection: Early detection of spindle
imbalance and hydraulic pressure anomalies enabled
corrective actions before major faults occurred, validating
the predictive capabilities of the framework.

3.2 DISCUSSION

Study results clearly highlight the success of digital
twining (DT) technology integration with Al and physics-
informed modelling for industrial predictive maintenance.
The combination framework does more than just improve
prediction accuracy to a significant degree; it also
generates valuable insights that are not accessible to
traditional data-driven methods. On the one hand, the
data-driven approach provides the model with the past
operational activities through LSTM; on the other, it says
that physics-informed neural networks (PINNs) help the
model make use of the basic laws of physics that govern
the machine behaviour. So, the final maintenance system
will be robust and can be used in other similar machines

as well, as it is based on general laws rather than specific
cases. The incorporation of physics-based constraints
within Al frameworks effectively mitigates the issue of
overfitting commonly observed in purely data-driven
models, enhancing both the interpretability and reliability
of predictions. By aligning model outputs with physically
plausible ranges, engineers can not only forecast
equipment failures but also understand their underlying
causes, enabling proactive and informed maintenance
planning. The study further highlights the importance of
real-time synchronization between digital twins and loT-
enabled sensors, ensuring continuous two-way data
exchange and accurate, up-to-date maintenance
predictions, even under varying operational conditions.
This interoperability is  particularly crucial in
heterogeneous manufacturing environments with diverse
systems and protocols (Murtaza et al., 2024). Simulation
and case-study results demonstrate that the hybrid DT—
Al framework significantly reduces machine downtime,
optimizes resource allocation, and extends equipment
lifespan, collectively contributing to substantial cost
savings. Overall, the research underscores predictive
maintenance as a transformative tool that enhances
efficiency, resilience, and competitiveness in smart
manufacturing, fostering a performance-driven, data-
centric industrial culture aligned with Industry 4.0 and 5.0
principles. The study finds out several challenges that
hinder the deployment of the study in the real world,
contrary to the positive results of the study. The
differences in data and noise in the data collection
devices are still major barriers, as inconsistencies in the
sensor types and changes in the operational conditions
can lower the performance of the model. Security issues
should be well taken care of in communication
architectures between cloud and edge so as not to have
data breaches and to be able to make decisions with
reliable data. Besides that, the expansion of the
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framework to multiple interlinked machines leads to
computational intricacies and requires sophisticated
orchestration strategies to control the dependencies and
interactions among the components; thus, solving these
problems demands a combination of efficient data
preprocessing, secure networking protocols, and scalable
computing frameworks capable of dealing with high-
frequency, multi-source data streams.

4. CONCLUSION

This paper explores the creation and utilisation of a
Digital Twin (DT)-driven predictive maintenance (PdM)
framework that evolves smart manufacturing systems.
Striving to cope with an increasingly complex industrial
environment in the era of Industry 4.0, the research
basically intended to help with the reliability of the
equipment, cut down on the unplanned downtime, and
enable efficient maintenance scheduling by virtue of
hybrid Al-physics model integration and live digital twin
simulations. The method involved merging physics-based
modelling in MATLAB/Simulink with data-driven machine
learning algorithms (LSTM and physics-informed neural
networks) to both detect patterns of equipment failure and
also compute the remaining useful life (RUL) of the
machine. Besides that, the real-time loT sensor data that
encompassed vibration, temperature, acoustic emissions,
and energy consumption were used for the digital twin
updates. The experiments consisted of the simulation and
case study of a CNC machining system, wherein several
parameters were used for the evaluation, such as RMSE,
MAPE, precision, recall, and Fl-score metrics. The
research resulted in enhanced predictive accuracy in
which the hybrid AI-PINN model was notably more
capable than the baseline models (Random Forest and
conventional LSTM), achieving an RMSE value of 4.1 and
MAPE value of 5.3%, showing greater reliability in RUL
and fault occurrence prediction. Also, optimised
maintenance scheduling for the implementation of the DT-
driven predictive maintenance that reduced unnecessary
activities by 36.8% and forecasted operational cost
savings of about 25% compared to the traditional
preventive maintenance strategy. Early fault detection
was also gotten in which fusion of real-time data streams
and physics-informed Al made it possible to detect
anomalies in spindle imbalance and hydraulic pressure at
very early stages, confirming the system’s ability to
intervene before major failures occur. And finally, digital
twin adaptability for real-time interaction between the
tangible and virtual worlds which enabled rapid and
spontaneous modification of operational parameters,
ensuring that the predictive maintenance framework
remained viable under different operating circumstances.
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