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Abstract 

 
The combination of digital twin (DT) technology with artificial intelligence (AI) has been recognised as a major change in 
the way a predictive maintenance system works in Industry 4.0 manufacturing environments. This research presents a 
hybrid DT architecture that uses real-time IoT sensor data and physics-based deep learning to forecast equipment 
failures even before they occur. The system proposed makes it possible to less frequent interruptions of the production 
process, to save the time of maintenance, and to adjust production changes automatically. The results of the verification 
process, which was simulation and a CNC machining case study, confirm the effectiveness of the approach in achieving 
higher predictive accuracy, lowering the frequency of maintenance tasks, and increasing operational efficiency. 
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1.  INTRODUCTION 
 
      Industry 4.0 has enabled a new era of manufacturing 
systems to be much interconnected, intelligent, and 

data‑driven. The central idea of the transformation is the 

digital twin (DT): a virtual, real‑time reflection of a physical 
object or a process that can, at the same time, monitor, 
simulate, and optimise industrial operations (Emmert-
Streib, 2023). Fornari, et al. (2024) emphasize that the 
expression “digital twin” is generally referred to a single 
concept, however, there is significant doubt in its 
definition and the level of the integration of the physical 
and the virtual entities. Their survey indicates that the 
actual twin implementations, i.e., the ones with two-way 
data interchange and active simulation, are quite few; 
nonetheless, the potential for manufacturing is enormous. 
In the field of manufacturing maintenance, the use of DT 
in conjunction with AI and ML can be compared to a 
paradigm shift. Predictive maintenance (PdM) through 
DT/AI integration enables industry workers not only to 
detect faults but also to anticipate degradation routes and 
calculate remaining useful life (RUL) of the parts to be 
able to avoid the occurrence of lethal failures (Chen et al., 
2023). Murtaza et al. (2024) performed a systematic 

review of DT and PdM technologies and discovered that 
companies are more and more disposed to abandon the 
strictly reactive or scheduled maintenance in favour of 

data‑driven, condition‑based strategies. This 
transformation results in higher system reliability, less 
unplanned downtime, and maintenance costs 
optimization. However, it still poses considerable 
difficulties to convert this potential into an industrial reality. 
It is essential that parts, sensor networks, communication 
protocols, cloud/edge computing layers, and advanced 
analytics be smoothly integrated for a successful 
implementation of DT-enabled PdM. Issues like data 
heterogeneity, latency, cybersecurity, interoperability of 
legacy systems, and organizational readiness that have 
been addressed by the research of Chen et al., 2023, are 
still viable obstacles to the implementation. Furthermore, 
Fornari, et al. (2024) mentioned that despite the fact that 
the concept of a DT is very clear, there are very few 
empirical studies which have demonstrated mature, fully 
integrated twins in manufacturing, thus suggesting a gap 
between theory and industrial practice. To this point, the 
latest academic work highlights the necessity of hybrid 
modelling frameworks that combine physics-based 
simulation with data-driven learning and thus increase the  
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predictive fidelity and the adaptability of the system under 
the variability of real world. To address this, hybrid 
approaches such as Physics-Informed Neural Networks 
(PINNs) integrate physical laws with data-driven learning, 
enhancing generalization and trustworthiness (Lee, 
Bagheri, & Kao, 2023; Sensors Editorial Board, 2024). 
Such hybrid approaches not only recall the strategic 
significance of DT-driven PdM as one of the technical 
innovations but also a complete facilitator of smart, 
resilient and sustainable manufacturing ecosystems. 
Addressing these limitations requires modular 
frameworks encompassing distinct data acquisition, 
modelling, and decision-making layers to ensure system 
flexibility and interoperability (Abayadeera et al., 2024). 
The shift towards cloud–edge computing architectures 
and Industrial Internet of Things (IIoT) infrastructures has 
further expanded the scalability of PdM, allowing real-time 
local analytics combined with cloud-based long-term 
trend prediction (Zonta et al., 2022). The fusion of DT and 
AI has given rise to intelligent, self-learning, and 
autonomous maintenance systems capable of continuous 
synchronization between physical and virtual 
environments (Fuller, Fan, Day, & Barlow, 2022). This 
integration supports closed-loop maintenance cycles, 
where operational data continuously update the digital 
model while AI-driven insights optimize system behaviour 
in real-time (Qi & Tao, 2023). Nevertheless, challenges 
such as data interoperability, model transparency, and 
computational demands remain substantial (Pan et al., 
2023). To overcome these barriers, recent research 
promotes human-centric and sustainable digital twin 
ecosystems, aligning with the Industry 5.0 vision that 
emphasizes ethical, interpretable, and energy-efficient AI 
collaboration (European Commission, 2023; Lee et al., 
2023). While existing predictive maintenance models 
have been rapidly improved, they still show some 
significant limitations. Most of them are dependent on 
non-changing or past data and do not have the capability 
of real-time adaptive learning. Additionally, the 

connection between digital twins and different types of IoT 
devices is a matter that has not been sufficiently solved 
(Nunes et al., 2023). As a result, manufacturing systems 
are facing the problem of late detection of faults, isolated 
data, and unplanned downtimes that are heavy on the 
budget. Therefore, an urgent demand exists for an 
interoperable, adaptive, and AI-powered digital twin 
framework able to perform failure prediction in real-time 
and maintenance optimisation in a range of varied 
industrial settings. The main purpose of this investigation 
is the creation and verification of a digital twin-driven 
predictive maintenance framework for intelligent 
manufacturing systems. This study is a methodological 
and empirical contribution to the digital transformation of 
the manufacturing industry and is limited to the 
mechanical manufacturing sector and the use of 
equipment (e.g., CNC machines). The enabled system 
promotes data interoperability, prediction accuracy, and 
efficiency of operations; thus, it is in line with the Industry 
5.0 concept, which is centred on human, intelligent, and 
eco-friendly production (Lee et al., 2023). 
 
 
2. METHODOLOGY  
 
      This research utilizes a mixed-method design that 
blends quantitative simulation-based modeling with 
qualitative system evaluation to create and confirm a 
Digital Twin (DT)-driven predictive maintenance 
framework for smart manufacturing systems. The method 
comprises the use of a physics-based model, machine 
learning algorithms, and realtime data analytics to not 
only anticipate machine failures but also to devise 
maintenance strategies optimization. The reason for 
opting a mixed-method design is that it can capture the 
exactness of the computational quantitative analysis as 
well as the contextual industrial processes understanding. 
Figure 1 shows the conceptual framework of the digital 
twin-driven predictive maintenance methodology. 
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                       Figure 1. Conceptual framework of the digital twin-driven predictive maintenance methodology 
 
2.2 Data Collection and Preprocessing 
 
      Initially, the data encompass both the live and the 
historical recordings. The data was taken from a smart 
manufacturing testbed that simulates the CNC machines, 
robotic manipulators, and conveyor systems, all of which 
are IoT sensor-equipped. The data types are vibration 
signals, acoustic emissions, temperature, and energy 
consumption. The above parameters are the most 

frequently used ones for fault diagnosis and residual life. 
Part of the data preprocessing is noise removal through 
wavelet denoising, feature scaling by min-max 
normalization, and outlier detection by the Isolation Forest 
algorithm, which is a method of improving model accuracy 
and stability. 
The Table 1 represents a brief description of the main 
parameters utilized in the research, the sensor types, and 
the sampling rates that are related to them. 

 
             Table 1: Data Parameters and Acquisition Specifications 
 

Parameter Sensor Type 
Sampling 

Rate 
Measurement Range Purpose 

Vibration Accelerometer 10 kHz ±16 g Fault detection 

Temperature Thermocouple 1 Hz 0–200 °C 
Overheating 
prediction 

Acoustic Emission Microphone 50 kHz 0–120 dB Crack detection 

Energy Consumption Power Meter 0.1 Hz 0–10 kW Efficiency tracking 

 
 
2.3 Digital Twin Model Development 
 
      The Digital Twin will be constructed using a hybrid 
modeling approach that couples a physics-based 
simulation model (developed in MATLAB Simulink) with 
data-driven learning components implemented in Python 
(TensorFlow and PyTorch). The DT mirrors the physical 

production line, continuously updating its parameters 
using real-time data through an MQTT protocol interface. 
To ensure interoperability, the architecture follows the 
ISO 23247 standard for digital twins in manufacturing, 
supporting multi-layered communication between 
Physical Assets (PA), Virtual Models (VM), and Analytics 
Modules (AM) (ISO, 2023). The DT incorporates a state  
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estimator for sensor fusion and a diagnostic agent for fault 
classification using convolutional neural networks 
(CNNs). A feedback loop enables the twin to simulate 
maintenance interventions and assess their impact on 
system performance before actual implementation. 
 
2.4 AI-Powered Predictive Maintenance Algorithm 
 
      The predictive maintenance algorithm combines Long 
Short-Term Memory (LSTM) networks for time-series 
forecasting with Physics-Informed Neural Networks 
(PINNs) for system dynamics modeling. The hybrid model 

enhances prediction accuracy by embedding physical 
laws into the learning process. Model training uses 80% 
of the dataset for training, 10% for validation, and 10% for 
testing. The loss function integrates both mean squared 
error (MSE) and physics-based regularization terms to 
penalize physically inconsistent predictions. 
Hyperparameters are optimized using the Bayesian 
Optimization technique to balance computational 
efficiency and model accuracy. Figure 2 shows the 
schematic of the hybrid AI-driven predictive maintenance 
model. 

 

 
 
                                   Figure 2. Schematic of the hybrid AI-driven predictive maintenance model 
 
      The validation stage utilizes simulation-based and 
real-world methods. The effectiveness of the predictive 
maintenance system is measured through a set of 
standard metrics, namely Root Mean Square Error 
(RMSE), Mean Absolute Percentage Error (MAPE), 
Precision, Recall, and F1-score; most of which have been 
applied  to assess model efficiency and generalization 

capability. Furthermore, a comparative analysis is 
performed with benchmark models (conventional ML 
models such as Random Forest and Support Vector 
Machine) to examine the relative gains in accuracy and 
stability. Table 2 shows the evaluation metrics along with 
their calculation formulas. 
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            Table 2: Model Evaluation Metrics 
 

Metric Formula Description 

RMSE √Σ(yᵢ − ŷᵢ)² / n Measures overall predictive deviation 

MAPE (1/n) Σ (yᵢ − ŷᵢ)/yᵢ 

Precision TP / (TP + FP) Accuracy of positive fault predictions 

Recall TP / (TP + FN) Completeness of fault detection 

F1-score 2 × (Precision × Recall) / (Precision + Recall) Balances precision and recall in classification 

 
 
      A sensitivity analysis will be conducted to determine 
how much the quality of the data and the parameters of 
the model will affect the accuracy of the prediction. In fact, 
a case study of an industrial manufacturing dataset 
(ssuch as NASA Turbofan Engine Degradation Dataset) 
will be used for external validation and cross-comparison. 
The research presented in this document adheres to the 
ethical standards typical of data management and 
industrial experimentation. All data sources involved in 
the study will be anonymized, and network security 
protocols will be put in place to prevent unauthorized 
access to the digital twin and the associated AI models. 
In addition, to ensure that data is handled in a responsible 
manner and protected, the research is in line with the 
ISO/IEC 27001 information security standards as well as 
the EU GDPR regulations. 
 
 
3. RESULTS AND DISCUSSION 
 
      Using TensorFlow/Keras AI modelling tools, Python 
code was developed in conjunction with 
MATLAB/Simulink for physics-based simulations to 
implement the proposed Digital Twin (DT)-driven 
predictive maintenance framework. The hybrid model 
integrates Long Short-Term Memory (LSTM) networks 

with Physics-Informed Neural Networks (PINNs) to 
leverage the strengths of both data-driven and physics-
based approaches, thereby enhancing the accuracy of 
CNC machine tool wear prediction and estimating the 
Remaining Useful Life (RUL) within a CNC machining 
system. Data acquisition was achieved by streaming 
sensor data (vibration, temperature, acoustic emission, 
and energy consumption) from a simulated industrial 
manufacturing environment. These data were then 
preprocessed to remove noise, normalize readings, and 
eliminate outliers, following established methodologies. 
The research was executed in three key stages: Hybrid 
model training, where 80% of the data were used for 
training, 10% for validation, and 10% for testing; Digital 
twin synchronization, achieved through the MQTT 
protocol to facilitate real-time updates of the virtual 
models; and Predictive maintenance evaluation, during 
which the performance of the hybrid AI-physics model 
was assessed and compared against baseline models 
such as Random Forest and standard LSTM to validate 
its effectiveness in predictive maintenance and real-time 
decision-making. Performance of the hybrid model was 
measured using RMSE, MAPE, precision, recall, and F1-
score. In Table 3, the performance of the hybrid model is 
benchmarked against that of the baseline models. 

 
                                         Table 3: Comparative Predictive Performance Metrics 
 

Metric Random Forest LSTM Hybrid AI-PINN (Proposed) 

RMSE 11.9 7.8 4.1 

MAPE (%) 18.5 12.2 5.3 

Precision (%) 82.1 88.4 92.6 

Recall (%) 79.3 85.7 90.2 

F1-Score (%) 80.7 87.0 91.4 

 
 
      The hybrid AI-PINN model outperformed both 
conventional LSTM and Random Forest models across 
all metrics. Embedding physics-based constraints 
enabled more accurate predictions of RUL and fault 
probability, particularly under variable operational 
conditions, reducing overfitting and enhancing 

generalization. Moreover, Figure 3 shows the 
maintenance schedule that was optimized from the hybrid 
model. A deep learning-based strategy for the system has 
decreased the overdone parts of the interventions to the 
level of the preventive schedules for the same reliability 
of the system. 
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Figure 3. Optimized Maintenance Schedule Vs. Preventive Maintenance Intervals 
 
3.1.1 Case Study: CNC Machining System 
 
      A case study was conducted on a simulated CNC 
machining line equipped with four critical components: 
spindle, servo motor, hydraulic system, and conveyor 
system. Sensor data from each component was 
processed through the hybrid AI-PINN framework. Key 
findings include: 
1. RUL Estimation Accuracy: The hybrid model 
achieved ±5% deviation from actual RUL values across 
all components, outperforming standard LSTM by 
approximately 15%. 
2. Maintenance Efficiency: Downtime was 
reduced by 36.8% compared to conventional preventive 
strategies, translating into a projected operational cost 
reduction of ~25%. 
3. Anomaly Detection: Early detection of spindle 
imbalance and hydraulic pressure anomalies enabled 
corrective actions before major faults occurred, validating 
the predictive capabilities of the framework. 
 
 
3.2 DISCUSSION 
 
      Study results clearly highlight the success of digital 
twining (DT) technology integration with AI and physics-
informed modelling for industrial predictive maintenance. 
The combination framework does more than just improve 
prediction accuracy to a significant degree; it also 
generates valuable insights that are not accessible to 
traditional data-driven methods. On the one hand, the 
data-driven approach provides the model with the past 
operational activities through LSTM; on the other, it says 
that physics-informed neural networks (PINNs) help the 
model make use of the basic laws of physics that govern 
the machine behaviour. So, the final maintenance system 
will be robust and can be used in other similar machines 

as well, as it is based on general laws rather than specific 
cases. The incorporation of physics-based constraints 
within AI frameworks effectively mitigates the issue of 
overfitting commonly observed in purely data-driven 
models, enhancing both the interpretability and reliability 
of predictions. By aligning model outputs with physically 
plausible ranges, engineers can not only forecast 
equipment failures but also understand their underlying 
causes, enabling proactive and informed maintenance 
planning. The study further highlights the importance of 
real-time synchronization between digital twins and IoT-
enabled sensors, ensuring continuous two-way data 
exchange and accurate, up-to-date maintenance 
predictions, even under varying operational conditions. 
This interoperability is particularly crucial in 
heterogeneous manufacturing environments with diverse 
systems and protocols (Murtaza et al., 2024). Simulation 
and case-study results demonstrate that the hybrid DT–
AI framework significantly reduces machine downtime, 
optimizes resource allocation, and extends equipment 
lifespan, collectively contributing to substantial cost 
savings. Overall, the research underscores predictive 
maintenance as a transformative tool that enhances 
efficiency, resilience, and competitiveness in smart 
manufacturing, fostering a performance-driven, data-
centric industrial culture aligned with Industry 4.0 and 5.0 
principles. The study finds out several challenges that 
hinder the deployment of the study in the real world, 
contrary to the positive results of the study. The 
differences in data and noise in the data collection 
devices are still major barriers, as inconsistencies in the 
sensor types and changes in the operational conditions 
can lower the performance of the model. Security issues 
should be well taken care of in communication 
architectures between cloud and edge so as not to have 
data breaches and to be able to make decisions with 
reliable data. Besides that, the expansion of the  

 

Source: Researcher’s Implementation (2025) 

Figure 4.2: Optimized Maintenance Schedule vs. Preventive Maintenance Intervals 
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framework to multiple interlinked machines leads to 
computational intricacies and requires sophisticated 
orchestration strategies to control the dependencies and 
interactions among the components; thus, solving these 
problems demands a combination of efficient data 
preprocessing, secure networking protocols, and scalable 
computing frameworks capable of dealing with high-
frequency, multi-source data streams. 
 
 
4. CONCLUSION 
 
     This paper explores the creation and utilisation of a 
Digital Twin (DT)-driven predictive maintenance (PdM) 
framework that evolves smart manufacturing systems. 
Striving to cope with an increasingly complex industrial 
environment in the era of Industry 4.0, the research 
basically intended to help with the reliability of the 
equipment, cut down on the unplanned downtime, and 
enable efficient maintenance scheduling by virtue of 
hybrid AI-physics model integration and live digital twin 
simulations. The method involved merging physics-based 
modelling in MATLAB/Simulink with data-driven machine 
learning algorithms (LSTM and physics-informed neural 
networks) to both detect patterns of equipment failure and 
also compute the remaining useful life (RUL) of the 
machine. Besides that, the real-time IoT sensor data that 
encompassed vibration, temperature, acoustic emissions, 
and energy consumption were used for the digital twin 
updates. The experiments consisted of the simulation and 
case study of a CNC machining system, wherein several 
parameters were used for the evaluation, such as RMSE, 
MAPE, precision, recall, and F1-score metrics. The 
research resulted in enhanced predictive accuracy in 
which the hybrid AI-PINN model was notably more 
capable than the baseline models (Random Forest and 
conventional LSTM), achieving an RMSE value of 4.1 and 
MAPE value of 5.3%, showing greater reliability in RUL 
and fault occurrence prediction. Also, optimised 
maintenance scheduling for the implementation of the DT-
driven predictive maintenance that reduced unnecessary 
activities by 36.8% and forecasted operational cost 
savings of about 25% compared to the traditional 
preventive maintenance strategy. Early fault detection 
was also gotten in which fusion of real-time data streams 
and physics-informed AI made it possible to detect 
anomalies in spindle imbalance and hydraulic pressure at 
very early stages, confirming the system’s ability to 
intervene before major failures occur. And finally, digital 
twin adaptability for real-time interaction between the 
tangible and virtual worlds which enabled rapid and 
spontaneous modification of operational parameters, 
ensuring that the predictive maintenance framework 
remained viable under different operating circumstances. 
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