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Abstract:  In any welding process, the weld's yield strength relative to the source metal is the most ideal strength 
parameter. The increasing need for stronger weld connections in structural and industrial materials necessitates a 
constant review and improvement of the welding process parameters. The relationship between certain mild steel 
weldment input variables (current, voltage, and gas flow rate) and their matching response variables has proven a 
problem. Response surface methodology (RSM) is used in this study to try to find a second-order logical link between 
the response variable (yield strength) and a subset of the input variables (current (I), voltage (V), and gas flow rate 
(GFR). In this study, we employed the Response Surface Methodology (RSM) for analysis, following the production of 
the central composite design matrix using the design expert program. This resulted in 20 experimental runs. Using the 
RSM and 170 amps of current, 18 volts of voltage, and 10.00 litres per minute of gas flow, we were able to get a mild 
steel weldment yield strength of 256.01. This study demonstrates that using the Response Surface Methodology (RSM) 
can improve the efficiency of TIG mild steel and forecast its yield strength. 
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1. INTRODUCTION 
 
      Welded structures, particularly those crafted from mild 
steel, often rely on optimal yield strength to ensure 
durability and reliability (Camacho et al., 2018). Yield 
strength is a fundamental mechanical property that 
dictates the material's ability to withstand deformation 
under applied stress (Samykano, 2021). Understanding 
and optimizing yield strength is critical for ensuring 
structural stability and longevity in the context of mild steel 
weldments (Voisin et al., 2021). This section delves into 
the complexities of yield strength and its implications in 
the welding industry. 
      Response Surface Methodology takes center stage 
as a systematic approach for modeling and optimizing the 
complex relationship between welding parameters and 
yield strength (Zhou et al., 2023). This segment elucidates 
the theoretical foundations of RSM, shedding light on how 
it becomes a guiding framework for achieving optimal 
yield strength in mild steel weldments (Marian and 
Tremmel, 2021). Strategies for optimWe explore 
strategies for optimizing yield strength in mild steel 
weldments, specifically focusing on using RSM to fine- 

 
 
tune welding parameters (Gunasekaran et al., 2023). w 
investigates how RSM aids in identifying optimal 
conditions that enhance yield strength while maintaining 
the structural integrity of the weldment (Senthil et al., 
2020). Real-world applications and case studies 
exemplify successful optimisation strategies in diverse 
welding scenarios. 
      Yield strength is a fundamental mechanical property 
that plays a pivotal role in understanding how a material 
behaves under applied stress (Sabzi and Rivera-Daz-del-
Castillo, 2020). Yield strength is defined as the level of 
stress at which a material undergoes significant plastic or 
permanent deformation without fracturing. It signifies the 
shift from elastic deformation, where the material regains 
its original shape after stress removal, to plastic 
deformation, where permanent changes take place 
(Hertzberg et al., 2020). Optimizing yield strength is 
paramount in welding, especially in structures crafted 
from mild steel. This mechanical property determines the 
material's ability to withstand deformation and stresses, 
ensuring the structural integrity and reliability of welded  
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components (Asprone et al., 2022). Understanding and 
fine-tuning yield strength are critical to achieving durable 
and high-performance weldments. Accurate prediction of 
yield strength is not without challenges. Variations in 
material properties, intricate welding processes, and 
computational complexities pose hurdles (Ansari et al., 
2021). 
      The review candidly addresses the challenges 
associated with accurately predicting yield strength, 
taking into account factors such as current, voltage, and 
gas flow rate. It offers insights into how RSM serves as a 
predictive tool, bridging the gap between theoretical 
modelling and real-world outcomes in the realm of yield 
strength prediction (Basu et al., 2022). Real-world case 
studies and practical applications take prominence, 
illustrating the effectiveness of RSM in predicting and 
optimising yield strength in mild steel weldments. These 
examples serve as valuable narratives, highlighting the 
adaptability and success of RSM in diverse welding 
environments (Prabhakar et al., 2023). The literature 
review contemplates future research directions and 
potential innovations in the field of yield strength 
optimization. Future advancements in algorithmic 
efficiency, the integration of advanced materials, and the 
exploration of novel welding techniques are considered 
pathways for furthering the understanding and 
management of yield strength in mild steel weldments. 
      In conclusion, yield strength stands as a critical 
mechanical property, particularly in the welding domain, 
where structural integrity is paramount. The strategic 
application of Response Surface Methodology proves 

instrumental in navigating the complexities associated 
with yield strength, paving the way for enhanced weld 
integrity and performance in mild steel applications. 
 
 
2.0 METHODOLOGY 
 
2.1 Design of the experiment 
 
      In the modern optimisation process, experimental 
design plays a critical role. Previously, the process 
focused on one factor or variable at a time. Today, we 
employ an experiment design to collect data for 
appropriate polynomial selection. Experimental design 
follows the rules of repetition, randomization, and local 
control. Today, we employ an experiment design to collect 
data for appropriate polynomial selection. Experimental 
design follows the rules of repetition, randomization, and 
local control. The number of input parameters determines 
the form of experimental design; in this study, we chose 
the central composite design due to its superior ability to 
handle three inputs. Other types of experimental designs 
include Taguchi, D-optimal, factorial, and Latin hypercube 
designs 
 
 
.2.2  Samples and sampling technique 
 
      After the edges were machined and bevelled, the 
plates were welded using tungsten inert gas welding 
equipment. Figure 1 depicts the setup for TIG welding 

 
  
 

.  
 
                                                                       Figure 1: TIG equipment 
 
 
      In this research investigation, 100% pure argon gas 
was employed as the shielding gas during the welding 
process to protect the weld specimen from ambient 

interaction. The shielding gas regulator and cylinder are 
shown in Figure 2. 
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                                                      Figure 2: Shielding Gas Cylinder and Regulator 
 
 
      We created the weld samples from a mild steel plate 
with a thickness of 10 mm, trimming it to size with a power 
hacksaw. We polished the surfaces with emery paper, 
welded the joints, ground the edges, and measured and 
documented the results. 
 
 
2.3 Method of Data Collection 
 
      We created the center composite design matrix using 
the design expert programme, which resulted in 20 
experimental runs. The reactions observed in the weld 
samples served as data, while the input and output 
parameters comprised the experimental matrix. 
 
 
2.4 Response Surface Methodology  
 
      Researchers frequently search for conditions that 
would optimize the process of interest. Stated differently, 
they seek to ascertain the process input parameter values 
at which the responses maximize. In terms of the process 
input parameters, the optimal value of a given function 
may be either minimum or maximum. RSM is one of the 
optimization techniques currently in widespread use to 
describe the welding process's performance and find the 
optimum of the responses of interest. RSM is a set of 
mathematical and statistical techniques that are useful for 
modelling and predicting the response of interest affected 
by several input variables with the aim of optimising this 
response. 
 
 
2.5: Testing the adequacy of the models developed 
 
      We evaluated the effectiveness of the created models 
using the analysis of variance (ANOVA). We used the 
same software to analyse the generated models and 

every term in the regression equation to determine the 
best fit. The sequential F-test, lack-of-fit test, and other 
adequacy measures (such as R2, Adj-R~, Pred. R2, and 
Adeq. Precision ratio) were employed. We can utilize 
ANOVA to determine the model's probability >F, also 
referred to as the p-value, and the probability of each term 
within the model. If the probability of the model and each 
of its terms does not exceed the significance level (let's 
say a = 0.05), we can consider the model adequate within 
the confidence range of (1-a). The lack-of-fit test may 
deem the lack of fit insignificant if the probability of the 
lack of fit exceeds the significance level. 
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Modelling and Optimisation using RSM 
 
      Response surface methodology (RSM) is used in this 
study to try and find a second-order logical relationship 
between the response variable (yield strength) and 
certain input variables (current (I), voltage (V), and gas 
flow rate (GFR)). 
      The ultimate goal of the optimisation process was to 
ascertain the ideal value of each input variable, 
specifically the current (Amp), voltage (Volt), and gas flow 
rate (l/min), in order to optimise output intensity. This was 
the optimisation model's purpose. 
To obtain the empirical information required for the 
optimization method, 
7. Initially, we utilized the central composite design 
approach (CCD) to finalize the statistical design of the 
experiment. A statistical tool was used to carry out the 
design and optimization. We used Design Expert 7.01 in 
this specific case. 
8. Second, we created an experimental design 
matrix that yielded 20 experimental runs with six (6)  
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centre points (k), six (6) axial points (2n), and eight (8) 
factorial points (2n).  
      As shown in Table 1, we computed the sequential 
model sum of squares for the yield strength response to 
con 

firm that the quadratic model was suitable for interpreting 
the experimental data. 

 

 

 
             Table 1: Sequential model sum of square for  yield strength 

 
 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Mean vs Total 1.064E+006 1 1.064E+006    

Linear vs Mean 3585.17 3 1195.06 3.17 0.0529  

2FI vs Linear 784.38 3 261.46 0.65 0.5978  

Quadratic vs 2FI 4938.45 3 1646.15 54.11 < 0.0001 Suggested 

Cubic vs Quadratic 204.83 4 51.21 3.09 0.1053 Aliased 

Residual 99.38 6 16.56    

Total 1.074E+006 20 53703.10    

 
 
      The sequential model sum of squares table displays 
the cumulative improvement in the model fit as term 
additions occur. Based on the sequential model's 
computed sum of squares, we selected the highest-order 
polynomial as the best fit, where the extra terms are 
significant and the model remains aliased. Table 1's data 
aliased the cubic polynomial, preventing its use in fitting 
the final modFurthermore, we suggested that the 
quadratic and 2FI models best fit the data, thereby 
supporting the use of quadratic polynomials in this 
analysis.sis. 

 

      We estimated the lack of fit test for each response to 
assess how well the quadratic equation model could 
explain the inherent variance in the experimental data. 
For prediction, it is impossible to use a model with a 
significant lack of fit.         
      Table 2 displays the results of the calculated yield 
strength deficienc

          Table 2: Lack of fit test for yield strength 

 
 Sum of  Mean F p-value  

Source Squares Df Square Value Prob > F  

Linear 6027.03 11 547.91 7.11 0.0211  

2FI 5242.66 8 655.33 9.41 0.0122  

Quadratic 304.21 5 60.84 0.70 0.6456 Suggested 

Cubic 99.38 1 99.38 0.22 0.6561 Aliased 

Pure Error 0.000 5 0.000    

 
   
      Table 2's results confirmed that the cubic polynomial 
had a substantial lack of fit and was therefore aliased to 
model analysis, whereas the quadratic polynomial had a 
non-significant lack of fit and was suggested for model 
analysis. 

      Table 3 displays the model statistics that were 
calculated for the yield strength response using the model 
sources.

  
         Table 3: Model summary statistics for  yield strength 

 
 Std.  Adjusted Predicted   

Source Dev. R-Squared R-Squared R-Squared PRESS  

Linear 19.41 0.3730 0.2554 0.0387 9240.02  

2FI 20.08 0.4546 0.2029 -0.6059 15436.52  

Quadratic 5.52 0.9684 0.9399 0.7473 2428.93 Suggested 

Cubic 4.07 0.9897 0.9673 -1.2790 21905.90 Aliased 
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      For every entire model, the standard deviation, r-
squared, adjusted r-squared, predicted r-squared, and 
predicted error sum of squares (PRESS) statistics are 
displayed in the summary statistics of model fit. The ideal 
criteria for selecting the optimal model source are a low 
standard deviation, an R-squared close to one, and a 

reasonably low PRESS. Table 3's results advised aliasing 
the cubic polynomial model, leading to the use of the 
quadratic polynomial model in this study. 
      Table 4 displays the one-way analysis of variance 
(ANOVA) table that was created for the yield strength in 
order to evaluate the quadratic model's strength..  

 
    Table 4: ANOVA table for yield strength 

 
 Sum of  Mean F p-value  

Source Squares Df Square Value Prob > F  

Model 9307.99 9 1034.22 34.00 < 0.0001 Significant 

A-current 3413.38 1 3413.38 112.21 < 0.0001  

B-voltage 68.32 1 68.32 2.25 0.1649  

C-gas flow rate 103.47 1 103.47 3.40 0.0949  

AB 703.13 1 703.13 23.11 0.0007  

AC 66.12 1 66.12 2.17 0.1712  

BC 15.13 1 15.13 0.50 0.4968  

A^2 1445.73 1 1445.73 47.52 < 0.0001  

B^2 3866.58 1 3866.58 127.10 < 0.0001  

C^2 252.08 1 252.08 8.29 0.0164  

Residual 304.21 10 30.42    

Lack of fit 304.21 5 60.84 0.70 0.6456 not significant 

Pure Error 0.000 5 0.000    

Cor Total 9612.20 19     

 
 
 
      To determine whether the model is significant and 
assess the substantial contributions of every distinct 
parameter, the combined effects, and the quadratic 
effects towards each answer, an analysis of variance 
(ANOVA) was required. According to Table 4's results, 
the model's 34.00 model F-value suggests that it is 
significant. Noise has a mere 0.01% probability of 
producing a "model F-value" of this magnitude. "Prob > F" 
values less than 0.0500 suggest the significance of the 
model terms. In this case, A, B, AB, BC, A2, B2, and C2 

are important model terms. If the value is greater than 
0.1000, the model terms are not important. The "Lack of 
Fit F-value" of 0.70 indicates that, in comparison to the 
pure error, the lack of fit is not significant. A significant 
"Lack of Fit F-value" has a 64.56% probability of being 
caused by noise. A non-significant lack of fit suggests a 
significant model, which is excellent.  
      Table 5 displays the yield strength and goodness of fit 
statistics to verify the quadratic model's suitability

. 
 
                Table 5: Goodness of fit statistics for yield strength 

 
Std. Dev. 5.52 R-Squared 0.9684 

Mean 230.70 Adj R-Squared 0.9399 

C.V. % 2.39 Pred R-Squared 0.7473 

PRESS 2428.93 Adeq Precision 14.815 

 
 
      Figure 5's result showed that there is a decent amount 
of agreement between the "Adj R-Squared" value of 
0.9399 and the "Predicted R-Squared" value of 0.7473. 
The signal to noise ratio is measured with adequate 
precision.  Ideally, the ratio should be higher than 4.  Table 
5's computed ratio of 14.815 suggests that the signal is 
sufficient.  With the aid of this model, one can effectively 
explore the design space and forecast the yield strength. 

We initially take into account the coefficient statistics and 
the associated standard errors in order to get the best 
solution. The difference between the experimental terms 
and their corresponding anticipated terms is measured by 
the computed standard error.  
      Table 6 displays yield strength coefficient statistics. 
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       Table 6: Coefficient estimates statistics generated for  yield stength 

 
 Coefficient  Standard 95% CI 95% CI  

Intercept 209.82 1 2.25 204.81 214.83  

A-current 15.81 1 1.49 12.48 19.13 1.00 

B-voltage -2.24 1 1.49 -5.56 1.09 1.00 

C-gas flow rate -2.75 1 1.49 -6.08 0.57 1.00 

AB 9.38 1 1.95 5.03 13.72 1.00 

AC -2.87 1 1.95 -7.22 1.47 1.00 

BC 1.38 1 1.95 -2.97 5.72 1.00 

A^2 10.02 1 1.45 6.78 13.25 1.02 

B^2 16.38 1 1.45 13.14 19.62 1.02 

C^2 4.18 1 1.45 0.95 7.42 1.02 

 
 
      Based on the coded data, the ideal equation is 
supplied that illustrates the combined interactions and 
individual effects of the chosen input variables (current, 

voltage, and gas flow rate) versus the measured yield 
strength. 

 

 
 
 
      The optimal equation which shows the individual 
effects and combine interactions of the selected input 
variables (current, voltage and gas flow rate) against the 

mesured yield strength is presented based on the actual 
values.  
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      Table 7 presents the diagnostics case statistics, which compare the observed yield strength values to their expected 
values. In fact, the diagnostic case statistics shed light on the suitability of the ideal second-order polynomial equation 
as well as the strength of the model.  
 
Table 7: Diagnostics case statistics report of observed versus predicted  yield strength 

 
Standar
d 

Actual Predicted   Studentized Studentized Fitted 
Value 

Cook's Run 

Order Value Value Residual Leverage Residual Residual DFFITS Distance Order 

1 235.00 237.45 -2.45 0.670 -0.774 -0.757 -1.078 0.121 14 

2 257.00 256.07 0.93 0.670 0.293 0.279 0.397 0.017 2 

3 218.00 211.48 6.52 0.670 2.057 2.570 * 3.66 0.858 16 

4 265.00 267.60 -2.60 0.670 -0.820 -0.805 -1.147 0.136 9 

5 242.00 234.95 7.05 0.670 2.225 2.971 * 4.23 * 1.00 7 

6 240.00 242.07 -2.07 0.670 -0.652 -0.632 -0.900 0.086 15 

7 218.00 214.47 3.53 0.670 1.112 1.127 1.605 0.251 20 

8 266.00 259.09 6.91 0.670 2.179 2.853 * 4.06 0.963 1 

9 205.00 211.56 -6.56 0.607 -1.898 -2.252 * -2.80 0.557 11 

10 265.00 264.74 0.26 0.607 0.076 0.072 0.090 0.001 6 

11 260.00 259.91 0.089 0.607 0.026 0.024 0.030 0.000 3 

12 246.00 252.39 -6.39 0.607 -1.848 -2.161 * -2.69 0.528 10 

13 227.00 226.28 0.72 0.607 0.209 0.198 0.247 0.007 4 

14 210.00 217.02 -7.02 0.607 -2.031 -2.514 * -3.13 0.638 8 

15 210.00 209.82 0.18 0.166 0.036 0.034 0.015 0.000 5 

16 210.00 209.82 0.18 0.166 0.036 0.034 0.015 0.000 19 

17 210.00 209.82 0.18 0.166 0.036 0.034 0.015 0.000 18 

18 210.00 209.82 0.18 0.166 0.036 0.034 0.015 0.000 13 

19 210.00 209.82 0.18 0.166 0.036 0.034 0.015 0.000 12 

20 210.00 209.82 0.18 0.166 0.036 0.034 0.015 0.000 17 

 
Any model's acceptability must first be verified by the 
results of a suitable statistical study. The response 
surface model's statistical characteristics can be 

diagnosed using the residual normal probability plot 
shown in Figure 3. 
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Figure 3: Normal probability plot of studentized residuals for  Yield strength 
 
      Despite the modest spread, it is evident that the 
points follow a straight line. Aside from the linear trend, 
there is no discernible pattern, such as an "s-shaped" 
curve. This suggests that the residuals follow a normal 
distribution and that further processing of the response 
data is not necessary for a more accurate interpretation. 
We used the normal probability plot of studentized 
residuals to evaluate the normality of the computed 
residuals. We used the normal probability plot of 
residuals, which is the number of standard deviations of 

actual values based on the projected values, to 
determine if the residuals (observed and expected) 
follow a normal distribution. It is the most important 
presumption for determining whether a statistical model 
is adequate. The estimated residuals in Figure 3 are 
roughly normally distributed, indicating that the 
constructed model is satisfactory. 
      Figure 4 displays the predicted yield strength after 
producing a plot of residuals to identify the presence of 
mega patterns or expanding variance. 

 

 
                                     
                                                           Figure 4: Plot of Residual vs Predicted for yield strength 
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The graph shows that the spots are in close proximity to 
the line of fit. For the most part, the model can accurately 
anticipate the data points.   

For yield strength, which is depicted in figure 5, the 
predicted values are compared to the actual values in 
order to identify a value or set of values that the model is 
unable to identify with ease. 

 

 
Figure 5: Plot of Predicted Vs Actual for Yield strength 
 
      To measure the influence of each data point of yield strength on the predicted value a Plot of DFFITS Vs Run was 
produce shown in the figure 6. 
 

 
 
                                          Figure 6: Plot of DFFITS Vs Run s yield strength 
 
      DFFITS vs run plot is a visual tool that represents the 
degree to which the ith observation affects the value that 
is expected. It is better to have lower values. Keep an eye 
out for spots that go over the estimated bounds.  
The cook's distance plot was created for each response 
to ascertain whether the experimental data contained a 
potential anomaly. The amount that the regression would  
 

alter if the anomaly were removed from the study is shown 
by the cook's distance. It's important to look into any point 
that appears to be an anomaly and has a very high 
distance value in comparison to the other points. Figures 
7 exhibit the generated cook's distance for the yield 
strength. 
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                                                      Figure 7: Generated cook’s distance for yield strength 
 
      The lowest bound of the cook's distance plot is 0.00, 
and the upper bound is 1.00. The outliers are 
experimental values that fall outside of the lower or upper 
boundaries and need to be thoroughly examined. The 
results of Figure 7 show that there are no potential outliers 
in the data utilized for this analysis, demonstrating the  
suitability of the experimental data.  
 

      In order to investigate the impact of combining input 
variables on the yield strength, the 3D surface plots 
shown in Figure 8 were created using the following 
method: 
 
 
 
 
 

 
 
                                                          Figure 8: Effect of current and voltage  on yield strength 
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      In order to investigate the impact of combining input variables on the yield strength, the 3D surface plots shown in 
Figure 9 were created using the following method: 
 
 
 

 
 
                          Figure 9: Effect of gas flow rate and current  on yield strength 
 
      In order to investigate how combining input factors affects the yield strength, the 3D surface plots shown in Figure 
10 were created using the following method: 
 
 

 
 
                                        Figure 10: Impact of gas flow rate and voltage  on yield strength 
 
      The link between the response variables (yield 
strength) and the input variables (current and voltage) is 
depicted in Figure 8's 3D surface plot. This three-

dimensional surface graphic was used to help visualize 
the response surface. This image might give you a better 
idea of the surface, but it's not as helpful for determining  
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response values and coordinates as the contour plot is. 
The yield strength reduces correspondingly with 
increasing curve surface color. More points that were 
slightly tinted for simpler identification sank below the 
surface, as shown by the presence of a colored hole in 
the center of the upper surface.  
      It can be seen from the surface plot in Figure 9 that 
the surface's color lightens with increasing voltage and 

current. It follows that an increase in voltage and current 
will result in a corresponding rise in response value.  
Figure 10 shows that when gas flow rate and voltage 
increase, the surface's color becomes lighter.  
      Lastly, Figure 11 displays the contour plots of the yield 
strength response variable against the optimized value of 
current and voltage based on the optimal solution. 

 
 

 
 
                                     Figure 11: Predicting yield strength using contour plot 
 
      Figure 12 displays the contour plots that display the yield strength response variable against the gas flow rate and 
current optimized values. 
 

 
 
                                         Figure 12: Predicting yield strength using contour plot 
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      Figure 13 displays the contour plots that display the yield strength response variable against the gas flow rate and 
voltage optimum values. 
 

 
 
                                          Figure 13: Predicting  yield strength using contour plot 

 

4. CONCLUSION 
 
       The implementation of response surface 
methodology to maximize yield strength has been 
demonstrated by the study. An 18 volt voltage, 170 amp 
current, and 10.00 l/min of gas flow rate will provide a 
welding process with a 256.01 yield strength. It has been 
successfully demonstrated that response surface 
methodology (RSM) can be applied to the central 
composite design approach for the purpose of optimizing 
and predicting the yield strength of TIG mild steel welds. 
The study's findings demonstrate that the RSM is a very 
useful tool for forecasting and optimizing the output 
reactions of TIG mild steel welds.  
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