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Abstract: Because of its exceptional mechanical qualities, pitting resistance, stress-corrosion cracking, production 
features, and uses in oil and gas, nuclear power, thermal power generation, chemical processing, saltwater treatment, 
and pipeline infrastructure, duplex stainless steel has emerged as one of the stainless steel family's fastest-growing 
materials. However, because of its great toughness, poor heat conductivity, and ductility, it is more challenging to 
process. In order to answer and meet the industrial need, the experiment was carried out utilizing 2205 Duplex Stainless 
Steel bars taking into account carbide cutting tools, estimating machining time employing a CNC lathe. The Central 
Composite Design was the experimental design adopted, that was produced using the design 7.1 software and the 
Response Surface Methodology achieved a desirability value of 0.973, indicating optimal machining conditions. These 
conditions included a depth of cut of 0.4, a cutting velocity of 250, and a feed rate of 0.5, yielded a machined 
component with a material chip size of 0.141. The ANN model was used in conjunction with the RSM model to forecast 
the output parameters. Due to its greater coefficient of determination, the Response Surface Methodology is chosen to 
be the superior predictive model over the Artificial Neural Network based on the data obtained. 
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1. INTRODUCTION  
 
      In machining operations, the size and morphology of 
chips produced during the cutting process have a 
significant impact on tool life, machining efficiency, and 
surface finish (Das et al., 2022).  Optimizing chip size is 
crucial in machining operations as it affects several 
aspects of the process. Smaller, well-controlled chips can 
result in lesser tool wear, lower cutting forces, increased 
surface quality, and increased overall machining 
efficiency. On the other hand, improper chip formation can 
cause tool damage, poor surface finish, and increased 
energy consumption (Tlhabadira et al., 2019). Different 
materials exhibit varying chip formation characteristics 
during machining. Altering cutting velocity, feed 
advancement, and cutting depth which are critical 
machining variables which affect chip size (Ghoreishi et 
al., 2018). Optimization approaches aim to get the ideal 
mixture of these parameters to achieve the desired 
response prediction as shown in Oyejide et al., 2024  

 
 
where decision support expert techniques for Improved 
gasoline yield. Tool geometry, including rake angle and 
tool nose radius, can impact chip formation (Chaudhari 
and Wang, 2019). Optimization involves designing tool 
geometries that promote the formation of controlled and 
manageable chips. Proper coolant and lubrication 
systems can assist in chip control (Darshan et al., 2019). 
The optimization of temperature control and lubrication 
techniques contributes to reducing chip size and 
improving tool life. High-speed machining, trochoidal 
milling, and other advanced machining techniques are 
explored for their potential to influence chip size and 
enhance tool life. Gupta et al. (2019) found that the 
duration of interface between the device and the chip 
decreased as the speed of cut increased while 
Khawarizmi et al. (2022) estimated the thermal and strain 
characteristics within the chip by using finite element 
analysis to find the Johnson-Cook material model factors  
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that best reproduced the experimentally observed 
adiabatically sheared segmented chip morphology and 
intermittent cutting force fluctuations. Surface quality and 
tool life are decreased as a result of the continual chip 
issue brought on by varying rake angles and feed rates 
(Zamri & Yusoff, 2022). When turning ductile steels and 
super alloys, chip control challenges are frequently 
encountered during machining with varied depths of cut 
for finishing, semi-finishing, and roughing. To manage 
chips during the turning process, the majority of inserts 
use chip breaker geometry. Nevertheless, in the 
processing of deformable metals, intact chips continue to 
provide challenges for automation and production 
management (Yılmaz et al., 2018). Modelling output 
machining performances, fundamental factors (such as 
forces, temperatures, stresses, etc.) and machine 
industry-relevant output performances (such as tool life, 
surface quality, and chip formation, etc.) are crucial 
because traditional machining techniques continue to 
account for the majority of manufacture processes 
(Sekulic et al., 2018). Abhang et al. (2021) found that the 
primary determinant of chip thickness is feed rate, which 
is succeeded by cut depth and nose radius. Several 
experiments were carried out by Aamir et al. (2020) that 
were depending on the thrust force measurement, the 
post-drilling tool settings, chip development, and the hole 
quality as measured by surface roughness and burrs. 
According to the findings, small-diameter carbide drills 
with increased tip angles, yielded better-quality holes, 
minimized edge wear from shorter chip breaking, and 
less thrust force. In order to maintain operator safety and 
productivity, continual chip control in machining 
operations is a critical concern. Additionally, a CNC 
machine or automated production system requires 
effective chip control in particular because any chip 
control failure might result in a decrease in productivity 
(Yilmaz and Kiyak, 2020). Drilling uses a revolving cutter 
known as a drill to produce round holes in a workpiece. 
Chips vary in size and shape due to differences in drill 
design characteristics, machining settings, and material 
pairings between the tool and workpiece.  Aamir et al. 
(2020) found that smaller, well-broken chips resulted in 
smoother drilling. They concluded that chip size, 
particularly length and thickness, significantly impacted 
the formation of high-quality holes and less tool wear. 
Continuous chips of excessive length tend to wrap around 
the drill, necessitating manual intervention and negatively 
impacting surface roughness (Ra). Furthermore, it was 
mentioned that the chips may also obstruct the drill 
grooves, breaking the tools and lengthening the 
machining time. Chip breakage is challenging when 
machining ductile steel and superalloys, and long chips 
are the primary issue with continuous turning operations. 
Chip formation during machining reduces operating 
efficiency and has a negative impact on workpiece quality, 
tool life, worker and tool safety, and energy usage. Chip 

breaking must be used to manage the ongoing chip 
generation during machining in order to mitigate such 
issues (Yılmaz et al., 2020). Optimizing material chip size 
is a critical aspect of machining operations with significant 
implications for tool life, efficiency, and product quality. It 
is a multidisciplinary field that involves considerations of 
cutting parameters, tool design, coolant/lubrication 
strategies, and material properties (Du et al., 2023). 
Advancements in chip size optimization benefit industries 
ranging from automotive manufacturing to aerospace and 
beyond. 
 
 
2. METHODOLOGY 
 
2.1 Experimental Approach  
 
      In this study, based on the number of model inputs, 
an empirical approach was adopted. The matrix was 
created utilizing software designed by a design expert. It 
made use of the CCD and the 2k factorial design. The 
CCD accommodates 3-5 levels for input parameters, 
whereas the 2k factorial design limits input 
parameters to two levels. 
 
 
2.2 Method of Data Collection  
 
      In this study 20 runs of the experiment were produced 
by the central composite design, utilizing Design Expert 
7.1, a layout was generated. This encompassed 
variables and responses; these experimental trials 
contained the outcomes of the chosen substance. 
Techniques from RSM and ANN were 
subsequently employed to analyze this matrix. 
 
 
2.3 Response Surface Methodology (RSM) 
 
      RSM is extensively utilized in scenarios involving 
multiple input variables impacting one or multiple 
outcome variables. It integrates mathematical and 
statistical models to investigate systems where the 
objective is to improve a target response influenced by 
several variables. RSM assumes a crucial role in the 
creating, developing, and formulating new offerings, in 
addition to perfecting current ones. Its core elements 
comprise trial planning, statistical modeling, and 
enhancement methodologies, which collectively explore 
and establish the empirical relationships among factors. 
 
 
2.4 Artificial Neural Network 
 
      A neural network is a distributed, massively parallel 
computing system that can store empirical data for a  
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variety of uses. It is an effective data mining technology 
that is mostly used to uncover hidden patterns in datasets. 
It's worth mentioning that neural networks and the human 
brain have two key parallels. First, synaptic weights—a 
measure of the intensity of neural connections —are used 
to store knowledge during the learning process. Second, 
a transfer function (f) computes the cumulative weighted 
input plus an offset value. Each fundamental neuron 
receiving R inputs allocates suitable weights (w). The 
transfer function (f) can be any differentiable function 
used to determine neuron outputs. In multilayer networks, 
the log-sigmoid transfer function, also referred to as 
logsig, is a commonly employed choice. The sigmoid 
transfer function, specifically the log-sigmoid, generates 
output values that range from 0 to 1 when the net input of 
the neuron shifts from a negative value to a positive 
infinity. Multilayer networks demonstrate the flexibility in 

selecting transfer functions, with some opting for the 
transfer function of tan-sigmoid. In many cases, sigmoid 
output neurons are preferred for tasks involving pattern 
recognition, while linear output neurons prove valuable 
when tackling function-fitting challenges. 
 
 
3. FINDINGS AND ANALYSIS 
 
3.1  Modelling and Optimization using RSM 
 
      Twenty experimental runs were conducted in this 
investigation, with each run determining the cut depth, 
spindle speed and feed rate. For each experiment the 
responses were measured.  
Table 1 presents the cumulative sum of squares for the 
chip size response to verify model applicability. 

 
 
     Table 1: Cumulative Model Sum of Squares chip size 

 
Origin Squares Sum df Average Square F-value p-value  

Average vs Aggregate 1.30 1 1.30    

Linear vs Average 0.0138 3 0.0046 0.6055 0.6210  

2FI vs Linear 0.0669 3 0.0223 5.30 0.0132  

Quadratic vs 2FI 0.0524 3 0.0175 75.93 < 0.0001 Recommended 

Cubic vs Quadratic 0.0009 4 0.0002 1.03 0.4637 Aliased 

Residual 0.0014 6 0.0002    

Aggregate 1.43 20 0.0715    

 
 
      Choose the highest-order polynomial where the 
model remains unbiased and the extra terms are 
statistically significant.  
      A test for lack of fit showed performed to determine  

which model was best suited for Chip Size, and the model 
with the least amount of lack of fit was selected. Table 2 
displays the lack of fit results for Chip Size. 
 

 
 
               Table 2: Lack of Fit Tests for chip size 

 
Origin Squares Sum df Average Square F-value p-value  

Linear 0.1203 12 0.0109 41.03 0.0004  

2FI 0.0534 9 0.0067 25.04 0.0013  

Quadratic 0.0010 5 0.0002 0.7266 0.6327 Recommended 

Cubic 0.0000 1 0.0000 0.1221 0.7410 Aliased 

Residual 
Error 

0.0013 6 0.0003    

 
            A negligible lack-of-fit should be present in the chosen model.  
 
 
      The model summary statistics for Chip Size were 
assessed in order to further verify the model's 
applicability; the model with the largest R-squared 

value is the one that is preferred. Summary statistics for 
the model of the chip size is as shown in table 3 
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            Table 3: Summary statistics for chip size 
 

Origin Std. Dev. R² Adjusted R² Predicted R² PRESS  

Linear 0.0872 0.1020 -0.0664 -0.6282 0.2206  

2FI 0.0649 0.5960 0.4095 0.2000 0.1084  

Quadratic 0.0152 0.9830 0.9677 0.9279 0.0098 Recommended 

Cubic 0.0151 0.9899 0.9681 0.9329 0.0091 Aliased 

 
            Examine the model that maximizes both the Predicted R2 and the Adjusted R2. 
 
      The model's ANOVA was calculated to further check 
for the significance in the quadratic framework, the 

analysis of variance (ANOVA) was conducted for Chip 
Size. This is displayed in Table 4. 

 
 
                    Table 4: Quadratic Model ANOVA for chip size 

 

Origin 
Squares 

Sum 
Df Average Square F-value p-value  

Model 0.1332 9 0.0148 64.29 < 0.0001 Important 

A-depth of 
cut 

0.0044 1 0.0044 19.02 0.0014  

B-cutting 
speed 

0.0000 1 0.0000 0.1777 0.6823  

C-feed rate 0.0094 1 0.0094 40.81 < 0.0001  

AB 0.0003 1 0.0003 1.36 0.2710  

AC 0.0666 1 0.0666 289.35 < 0.0001  

BC 0.0000 1 0.0000 0.0543 0.8204  

A² 0.0129 1 0.0129 56.22 < 0.0001  

B² 0.0200 1 0.0200 86.66 < 0.0001  

C² 0.0163 1 0.0163 70.98 < 0.0001  

Residual 0.0023 11 0.0002    

Lack of Fit 0.0010 6 0.0002 0.7266 0.6327 
not 

important 

Residual 
Error 

0.0013 6 0.0003    

Cor 
Aggregate 

0.1355 18     

 
 
      The Model F-value of 64.29 reveals the framework's 
strong statistical importance, with merely a 0.01% 
probability that it may be attributed to random noise. P-
values less than 0.0500 signify important framework 
terms, and here, factors A, C, AC, A2, B2, and C2 are 
important. In contrast, P-values surpassing 0.1000 
suggest that the corresponding framework terms are not 
important. If the framework contains numerous non-
significant terms (apart from those needed to maintain 
hierarchy), simplifying the framework may improve its 
accuracy. 

      The Lack of Fit F-value of 0.73 indicates that 
the Lack of Fit is statistically insignificant relative to 
residual error, with a 63.27% probability of a result of this 
kind arising from noise. This outcome is favorable, as it 
implies the model accurately represents the data. 
      To evaluate the robustness and reliability of the 
developed model, a goodness-of-fit statistical test is 
performed for chip size as shown in Table 5.  
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                            Table 5: Statistical Measures of Fit for Chip Size 
 

Std. Dev. 0.0152 R² 0.9830 

Average 0.2545 Adjusted R² 0.9677 

C.V. % 5.96 Predicted R² 0.9279 

  Adeq Precision 24.4287 

 
      There is good agreement between the Predicted R2 
value (0.9279) and the Adjusted R2 value (0.9677), since 
the difference is minimal (less than 0.2). This consistency 
indicates a reliable model. 
      Adequate Precision, quantifying the signal-to-noise 
ratio indicates a favorable outcome when it exceeds 4. 

The obtained ratio of 24.429 confirms a robust signal, 
confirming the model's reliability for exploring 
the design space. 
     To optimize the chip size, the coefficient estimates are 
determined, and the statistical details of these estimates 
are summarized in Table 6.  

 
 
          Table 6: Coefficient Estimate Statistics for the Chip Size 
 

Factor Coefficient Estimate df Standard Error 95% CI Low 95% CI High VIF 

Intercept 0.2266 1 0.0062 0.2128 0.2404  

A-depth of 
cut 

0.0179 1 0.0041 0.0088 0.0271 1.001 

B-cutting 
speed 

0.0017 1 0.0041 -0.0074 0.0109 1.001 

C-feed rate 0.0262 1 0.0041 0.0171 0.0354 1.001 

AB -0.0063 1 0.0054 -0.0182 0.0057 1.001 

AC -0.0912 1 0.0054 -0.1032 -0.0793 1.001 

BC -0.0013 1 0.0054 -0.0132 0.0107 1.001 

A² -0.0300 1 0.0040 -0.0389 -0.0211 1.02 

B² 0.0372 1 0.0040 0.0283 0.0461 1.02 

C² 0.0337 1 0.0040 0.0248 0.0426 1.02 

 
 
      In an orthogonal design, the intercept signifies the 
overall mean response. Coefficient estimates 
subsequently reveal the anticipated alteration in reaction 
to a single-unit shift in a factor, while maintaining all else 
being equal. Essentially, these coefficients represent 
refinements to the mean response based on specific 
factor configurations. VIFs are one when the factors are 

independent; multicollinearity is suggested by Variance 
Inflation Factors (VIFs) exceeding 1; the more severe the 
correlation between the factors, the higher the VIF. 
Generally speaking, VIFs under 10 are acceptable.  
A normal plot of residuals is demonstrated that the model 
is appropriate for the data on Chip Size as shown in 
Figure 1

. 
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          chip size 

 
                            
                       Figure 1: Residual Normality Plot for Chip Size 
 
      If residuals are normally distributed, the points will lie 
along a straight line, as shown by the normal probability 
plot. Even a regular set of data can have a modest scatter. 
The typical residual plot A moderate scatter was found by 
Chip Size, suggesting that the data is normal. 

      A plot of residuals and the projected value for Chip 
Size was created in order to look for big patterns or 
expanding variance, as seen in Figure 2. 

 
 

 
 
                                  Figure 2: Residuals vs. Predicted plot for Chip Size 
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      Plot of cook's distance for Chip Size was 
constructed to identify any potential any unusual patterns 
in the data. The change in the regression equation if the 
outlier were deleted from the analysis is known as the 

cook's distance. An outlier should be looked into if a point 
has a significantly large distance from the other 
data points. Figure 3 displays the calculated Cook's 
distance for Chip Size. 

 

 
 
                          Figure 3: Cook Distance for Chip Size 
 
 
      Box-Cox plot of Power Transforms is used to reduce anomalies such as non-additivity, non-normality and 
heteroscedasticity. It modifies a set of data's distributional form to be more regularly distributed in order to apply tests 
and confidence limits that depend on normality. 
       For Chip Size, as illustrated in Figure 4, the fitted values are displayed against the observed values to detect any 
values that are difficult for the model to detect. 
 
 

 
 

             Figure 4: Plot of Predicted Versus Actual for Chip Size 
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      The graph shows that the spots are near the line of fit. 
In essence, the model can forecast the majority of the  

data points.  

 
 

 
 

                             Figure 5: Cutting Speed and Cutting Depth Effect on Chip Size 
 
      The Surface Plot which shows the impact of Cutting 
Velocity and Cutting Depth on the Chip Size reveals that 
a rise in Cutting Velocity results in a moderate increase 

and decrease in the Chip Size while a rise in Cutting 
Depth results in a the direct increase of the Chip size. 

 
 

 
 
                      Figure 6: Machining Rate and Cutting Depth Effect on Chip Size 
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      The Surface Plot which demonstrates how the depth 
of cut and feed rate affect the Chip Size reveals that rise 
in Machining Rate and Depth of Cut results in an rise in 

Chip Size. But the Feed Rate has a higher impact on the 
Chip Size. 

 
 

 
 
                                Figure 7: Effect of Machining Rate and Cutting Speed on Chip Size 
 
 
      The Surface Plot which shows the effect of Feed Rate 
and Cutting Speed on the Chip Size shows that a rise in 
Machining Rate leads to a higher Chip Size whereas a 
rise in Cutting Speed leads to slight reduction and 
increase of the Chip Size. 
 
 
3.2 Modelling and forecasting employing ANN 
 
      The ANN study is conducted using Matlab R2022a. 
The Data is saved in the folder of the matlab, then 
normalized by converting to Numeric Matrix form. This will 
dynamically select the dataset's range, and Matlab will 
load the data using import selection. In Matlab, APPS is 
selected, then Neural Net Fitting to be begin the analysis 
process. The Levenberg-Marquardt Backpropagation 
algorithm technique, commonly referred to as an 
improved quadratic gradient optimization technique, was 
determined to be the superior learning algorithm and used 
in the network architecture design. Alternate numbers of 
hidden neurons were used in order to build a neural 
network optimized via the Levenberg- Marquardt 
Backpropagation algorithm to know the precise number of 

hidden neurons. The hidden layer consisted of 8 neurons, 
and the network outcome was tracked using coefficient of 
determination (r2) and MSE. In the network's input layer, 
the hyperbolic tangent (tan-sigmoid) function is applied to 
compute the layer's output based on the network's input, 
whereas the output layer employs a linear activation 
function (purelin). The network generation process 
divides the sample data for training data sets, verification 
and to test. For this study, 70% of the data was employed 
to perform the network training, 15% for verifying the 
network while the rest 15% was used to test the 
performance of the network at a maximum training cycle 
of 1000 epochs was used. Weight and bias values are 
optimized using the Trainlm function, which employs 
Levenberg-Marquardt algorithm. Despite using greater 
memory than other methods, Trainlm is one of the fastest 
backpropagation methods, making it a top recommended 
supervised learning algorithm.  
      The ANN architecture is 3-8-1, the network 
architecture produced by the back propagation neural 
network for material chip size prediction.  
      Figure 8 shows a performance metrics graph tracking 
the progress of training, verification, and testing. 
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                          Figure 8: Model Performance Plot for Predicting Material Chip Size 
 
      The performance plot in Figure 8 exhibits no signs of 
overfitting. Furthermore, the training, validation, and 
testing curves exhibit a similar trend, which aligns with 
expectations as the raw data were normalized prior to 
being used. A lower mean square error (MSE) is a critical 
measure of the network's training accuracy. An error rate 
of 0.0025167 observed at epoch 2 demonstrates the 

network's strong predictive capability for material chip 
size. 
      The training status, which includes details of the 
gradient evaluation, update gain (Mu), and validation test, 
is illustrated in Figure 9, providing further insight into the 
model's training dynamics. 

 
 

 
 
                                Figure 9: Training Status of Neural Network for Predicting Material Chip Size 
 
 
      Artificial neural networks use back propagation to 
determine each neuron's error contribution subsequent to 
executing a subset of learning data. The neural network 
determines the derivative of the loss function to quantify 
the proportion of error for each selected neuron. A smaller 
mistake is preferable. Figure 9's computed gradient value 

of 1.215e-12 shows that each chosen neuron's error 
contribution is extremely small. The neural network 
training algorithm's control parameter is called 
momentum gain (Mu). The value of the training gains 
must be smaller than unity. A network with a strong 
capacity to forecast the material chip size is demonstrated  
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by momentum gains of 1e-07. The regression chart that 
displays the relationship between the input variables 
(DOC, cutting speed and feed rate) and the target variable 

(material chip size) together with the training, verification, 
and testing processes, is shown in Figure 10. 

 
 

 
 
                              Figure 10: Training, Validation, and Testing Progress Regression Chart 
 
 
4.   CONCLUSION 
 
      The useful service life of a machined engineering 
structure is affected by its chip size. In this study, creation 
of numerical models utilizing response surface 
methodology and artificial neural network for optimizing 
and forecasting the chip size, taking into account the feed 
rate, cutting speed, and depth of cut as predictors. In 
order to create a machined structure with a material chip 
size of 0.141, the RSM analysis revealed optimal 
parameters: 0.400 depth of cut, 250.000 cutting speed, 
and 0.500 feed rate, with a desirability score of 0.973. The 
experimental design that was chosen was the central 
composite design, which was created using the design 
7.1 software. The artificial neural network model was used 
in conjunction with the RSM methodology to forecast the 
output parameters. The response surface methodology 
was deemed the most effective prediction framework 
according to results over the Artificial Neural Network as 
a result of its greater coefficient of determination. 
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