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Abstract:  Pipeline networks are essential for moving a variety of gases and liquids throughout different industrial 
sectors. By examining the effects of a particular non-elastic factor—the surface area of contact—on pipeline weldments 
and how those effects interact with elastic qualities, the study seeks to close this gap. In order to achieve this goal, an 
extensive experimental investigation is carried out that includes a variety of welding techniques, materials, and ambient 
circumstances in order to faithfully mimic real-world scenarios. The central composite design, which was painstakingly 
created with the aid of design expert software (version 13.0), is followed by the experimental setup. The response surface 
approach study provides the best results, recommending a voltage of 21.280 volts, a current of 160.000 amps, and a 
gas flow rate of 14.667 liters per minute. With the combined use of these input parameters, a welded junction with a 
surface area value of 40.670 and an attractiveness value of 0.918 was produced. Furthermore, in order to forecast output 
parameters, the Artificial Neural Network model is utilized and contrasted with the Response Surface Methodology. The 
results highlight how important it is to optimize non-elastic performance variables for pipeline weldments. Weldments 
can be constructed to withstand harsh circumstances, reduce the likelihood of failures, and greatly extend the operating 
lifespan of pipelines by precisely managing the surface area of contact. 
 
Keywords: pipeline weldments, surface area, input parameters, artificial neural network, response surface 
methodology.  

 
1. INTRODUCTION 
 
      Weld integrity is a critical aspect of welding 
processes, ensuring the strength and reliability of welded 
joints (Song et al., 2022). The surface area of contact 
between the materials being welded is a fundamental 
factor that significantly affects the quality and integrity of 
the weld (Jabar et al., 2023). A larger surface area of 
contact generally leads to improved weld integrity due to 
enhanced heat transfer, better fusion, and reduced stress 
concentrations (Benedetti et al., 2021). This literature 
review explores the impact of surface area of contact on 
weld integrity, encompassing various welding processes 
and materials. In welding, the surface area of contact 
refers to the interface between two materials to be joined 
(McCrea et al., 2023). This area is essential in 
establishing the quality and strength of the resultant weld. 
Several factors influence the surface area of contact, 
including joint design, material thickness, and welding 
process (Davis et al., 2021). Joint design is a critical  

 
consideration in welding processes (Singh & Shahi, 
2018). The type of joint, such as butt, lap, or fillet, affects 
the surface area of contact (Sejani et al., 2022). For 
example, a butt joint provides a larger surface area of 
contact compared to a lap joint, leading to improved weld 
integrity. Research has shown that joint design 
optimization is essential for achieving the desired weld 
strength and integrity (Adame et al., 2022). Material 
thickness significantly impacts the surface area of contact 
(Liu et al., 2019). Thicker materials generally have larger 
surface areas, which can influence heat distribution 
during welding. It is essential to consider material 
thickness when determining welding parameters and 
procedures to ensure proper fusion and prevent defects 
(Vasilev et al., 2021). Different welding processes, 
including laser, resistance, and arc welding, have varying 
effects on the surface area of contact. For instance, Gas 
tungsten arc welding (GTAW) and gas metal arc welding 
(GMAW) are two examples of arc welding procedures that  
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can provide precise control over the surface area of 
contact due to their focused heat source (Gibson et al., 
2021). A larger surface area allows for better heat 
distribution during welding, reducing the likelihood of 
overheating or underheating, which can lead to defects 
like cracking or incomplete fusion (Jabar et al., 2023). 
Welds with larger surface areas of contact distribute 
stress more evenly, minimizing stress concentrations that 
can weaken the weld and lead to premature failure (Geng 
et al., 2020). A greater surface area facilitates improved 
fusion between the base materials and the filler metal, 
resulting in a stronger and more durable weld (Ho & 
Kontopoulou, 2022). 
      Numerous research studies have investigated the 
relationship between surface area of contact and weld 
integrity. These studies often involve experimental setups 
to assess the mechanical properties, microstructure, and 
defect formation in welds with varying surface areas of 
contact (Derazkola & Simchi, 2018). The results 
consistently highlight the importance of optimizing the 
surface area to achieve robust welds. The surface area of 
contact varies depending on the welding process used. 
Different welding techniques create different contact 
geometries (Behrens et al., 2021). In butt welding, two 
materials with flat surfaces are joined along their edges. 
The surface area of contact in butt welds is relatively 
large, resulting in strong and reliable joints (Ye et al., 
2018). These are commonly used in structural 
applications. Lap welding involves overlapping two 
materials, creating a smaller contact area. While lap 
welds are easier to perform, they may have reduced 
strength compared to butt welds (Inamke et al., 2019). 
Fillet welds are used in corner joints and have a triangular 
cross-section. The surface area of contact in fillet welds 
is smaller than that in butt welds, making them suitable for 
lighter loads (Yaghoubi & Tavakoli, 2022). Surface 
preparation is a critical step in welding that directly affects 
the surface area of contact. Proper surface preparation 
involves removing contaminants, oxides, and debris from 
the materials being joined. This ensures a clean and well-
defined contact area, improving weld quality (Pang et al., 
2023). 
 
 
2. THEORETICAL ANALYSIS 
 
      In this research, a response surface methodology 
(RSM)-based attempt is made to construct a second order 
mathematical relationship between one response 
parameter, surface area, and several input factors, 
including voltage (V), current (I), and gas flow rate (GFR). 
      The objective of the optimization model was to raise 
the contact surface area. 
The ideal number for every input variable, including the 
gas flow rate (l/min), voltage (Volt), and current (Amp), 
which will maximise surface area contact, was found to be 
the process' end outcome. 

To generate the experimental data necessary for the 
optimisation procedure; 
i.  The central composite design approach (CCD) was 
employed for the statistical design of the experiment 
(DOE). A statistical program was used for the design and 
optimization procedures. In this particular case, it was 
decided to use Design Expert 7.01.   
ii.  The next stage was to create an experimental design 
matrix that contained eight factorial points (2n), six axial 
points (2n), and six center points (k) for a total of twenty 
experimental runs.  
 
 
A. Response Surface Methodology 
 
      Engineers frequently employed Response Surface 
Methodology (RSM) to identify the ideal circumstances 
required to carry out a certain activity. Finding the input 
parameter values for a process that produce the optimal 
outcomes, whether they involve decreasing or 
maximizing a specific parameter, is required. By using 
mathematical and statistical techniques to model and 
forecast the intended response, RSM is a commonly 
utilized optimization methodology that aids engineers in 
understanding how a process functions. The goal is to 
maximize or optimize the use of this reaction, which is 
dependent on several input variables.  
 
 
B. Artificial Neural Network 
 
      An extremely parallel and distributed computer 
system called a neural network has the capacity to hold 
experimental data for a variety of purposes. It works as a 
tool for data mining and is primarily made to seek obscure 
trends within datasets. It's interesting to note that the 
human brain and neural networks have two important 
characteristics. First, synaptic weights are used to store 
knowledge throughout the network's process of learning. 
These weights represent the degree of connectivity 
between inner neurons. Second, the transfer function (f) 
computes the sum of these weighted inputs coupled for 
every basic neuron with R inputs, there is a bias term and 
suitable weights (w) applied. Any differentiable function 
that is used to predict the outcomes of neurons can be the 
transfer function (f). The log-sigmoid transfer function, 
often known as logsig, is frequently used in multilayer 
networks. The output values of the sigmoid transfer 
function, and more precisely the log-sigmoid, range from 
0 to 1, depending on whether the net input to the neuron 
is either negative or positive infinity. Some multilayer 
networks choose the tan-sigmoid transfer function, 
demonstrating the flexibility in transfer function selection. 
While sigmoid output neurons are usually preferred for 
challenges that involves trend recognition, linear output 
neurons are effective for addressing function-fitting 
concerns. 
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In summary, artificial neural networks are software-based 
data mining techniques that leverage principles of 
neuronal transmission, drawing inspiration from the 
functioning of the human brain. They function as 
predictive tools that analyze data using techniques like 
training, learning, validation, and testing to make accurate 
predictions and unearth insightful information. 
 
 
3.  MATERIALS AND 
METHODS/METHODOLOGY/EXPERIMENTAL 
PROCEDURE 
 
A. Process parameters  
 
      Several factors were examined in this research study 
in connection to the welding pool's temperature. The 
welding current, voltage, and gas flow rate were among 
these factors. Twenty runs were made using different 
welding current, voltage, and gas flow rates to complete 
the trials, and these runs were utilized to join two mild 
steel plates that were each 60 x 40 x 10 mm in size. A 
specialized Brinell hardness testing unit was employed to 
conduct the Brinell hardness test in order to determine the 
hardness of the final welds. A ball made of tungsten 
carbide with a fixed diameter (D) is used in this test. A 
predetermined force (F) is applied to the ball, which is 
then held in position for a predetermined amount of time 
(T) before being released. This procedure causes the 
tested metal component to permanently distort or bear an 
imprint from the spherical indenter. By averaging 
measurements of the indentation's diameter taken from 
two or more places, the indentation's diameter (d) is 
established. A loading system made up of a hydraulic 
dashpot, weights, plunger, and levers surrounds the body 
of the Brinell hardness testing machine to carry out the 
test. Over on the moveable anvil is where the sample is 
placed. The ball-shaped indenter drops onto the 
sample when the lever is pulled, exerting a preset force 
that is subsequently displayed and examined on the 
display. 
 
 
B. Design of experiment 
 
A systematic and scientific process known as the design 
of experiments (DOE) is utilized to prepare and perform 
tests to determine a cause-and-effect relationship 
between variables. It is also a rigorous method for 
modifying a process' input variables and evaluating the 
outcomes while taking the process' intrinsic random 
unpredictability into account. Scientific research must 
include experimentation, and software programs like 

 Design Expert and Minitab greatly aid in making this 
process easier. These computer programs assist in data 
collection using experimental methods to guarantee 
accurate polynomial approximations. The Latin 
hypercube, full factorial, both the face-centered and the 
circumscribed central composite experimental designs 
are among the many types that are accessible. The 
amount of input parameters considered in this research, 
which developed models for all the responses using 
Design Expert software, had an impact on the choice of 
the central composite design for performing experiments.  
 
 
C. Materials and experimental set-up  
 
      Thermocouples were mounted in the gas tungsten arc 
welding (GTAW) system, which worked in the current 
range of 150 to 200 A. A 200 x 200 x 20 mm3 block of low-
carbon steel underwent this welding procedure. The gas 
was shielded using a DCEN (Direct Current Electrode 
Negative) setup with a 4 mm-arc gap. Measurements of 
temperature were made between 1500 and 1800 °C. Due 
to their exceptional resilience to high temperatures, W5 
tungsten thermocouples were employed. The tungsten 
wires and sleeving combined to give these thermocouples 
an overall diameter of 1.2 mm. They had a diameter of 1.4 
mm, a 20° angle, and were introduced into the samples to 
a depth of 4 mm.  
 
 
D. Method of Data Collection 
 
      Twenty test runs were conducted utilizing the central 
composite design matrix that the Design Expert software 
developed. The weld sample results, together with input 
and output parameters, were included in these test runs. 
The formula, denoted as Equation 2n + 2n + k, 
encompasses the following variables: k represents the 
count of center points, 2n signifies the quantity of axial 
points, and 2n pertains to the number of factorial points, 
was used to calculate the size of the data matrix. After 
that, this matrix was examined employing artificial neural 
networks (ANNs) with the Response Surface 
Methodology (RSM) techniques. 
 
 
4. RESULTS AND DISCUSSION 
      To evaluate the appropriateness of the quadratic 
model for analyzing the experimental data, the sum of 
squares of the sequential model was computed 
particularly for the surface area response parameter. The 
results of this calculation are summarized in Table 2. 
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      Table 2: Sequential model sum of square for surface area of weld 
 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F-value p-value  

Mean vs Total 31134.73 1 31134.73    

Linear vs Mean 39.48 3 13.16 0.7095 0.5604  

2FI vs Linear 121.83 3 40.61 3.02 0.0683  

Quadratic vs 2FI 170.97 3 56.99 143.83 < 0.0001 Suggested 

Cubic vs Quadratic 3.75 4 0.9369 26.19 0.0006 Aliased 

Residual 0.2147 6 0.0358    

Total 31470.97 20 1573.55    

 
 
      The sequential model sum of squares table 
demonstrates how the model fits improves when more 
terms are introduced. Based on the calculated sequential 
model sum of squares, the highest order polynomial with 
significant extra terms and no aliasing was selected as the 
best fit. It was discovered that the cubic polynomial was 
aliased based on the results in table 2, hence it is not 
suitable for fitting the final model. Furthermore, the use of 
the quadratic polynomial in this study was supported by 
the suggestion that the quadratic and 2FI model better fit 
the data. 

       To assess the explanatory power of the quadratic 
model in capturing the inherent variation within the 
experimental findings, a test for lack of fit was carried out 
every one of the response variables. A model with a 
noticeable lack of fit is typically not suitable for making 
accurate predictions. Findings from the computed lack of 
fit test for the surface area of contact response are 
presented in Table 3.  
 

 
 
                Table 3: Lack of Fit Test for a Surface Area of Contact 
 

Source 
Sum of 
Squares 

df 
Mean 
Square 

F-value p-value  

Linear 296.76 11 26.98 6.25 0.0256  

2FI 174.93 8 21.87 8.37 0.0142  

Quadratic 3.96 5 0.7925 0.6599 0.7311 Suggested 

Cubic 0.2147 1 0.2147 0.3939 0.6937 Aliased 

Pure Error 0.0000 5 0.0000    

 
 
      The model statistics for the surface area response, derived from various model sources, which are compiled in Table 
4. 
 
             Table 4: Model Summary Statistics for Surface Area of Weld 

 

Source Std. Dev. R² Adjusted R² 
Predicted 
R² 

PRESS  

Linear 4.31 0.1174 -0.0481 -0.4946 502.53  

2FI 3.67 0.4797 0.2396 -0.1277 379.17  

Quadratic 0.6295 0.9882 0.9776 0.9077 31.03 Suggested 

Cubic 0.1891 0.9994 0.9980 0.8593 47.32 Aliased 

 
 
      Each entire model's standard deviation, R-squared 
(R²), adjusted R-squared (Adjusted R²), predicted R-
squared (Predicted R²), and Predicted Error Sum of 
Squares (PRESS) statistics are shown in the statistical 
analysis of model fit. Low PRESS, R-Squared around 
one, and a low standard deviation are the optimum 
parameters for locating the best model source, 

comparatively. The quadratic polynomial model was 
selected for this study because, based on its findings 
presented in Table 4, it was evident that the cubic 
polynomial model exhibited aliasing. 
Table 5's goodness of fit statistics are used to confirm that 
the quadratic model is adequate according to its ability to 
maximise surface area. 
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                                          Table 5: GOF Statistics for Surface Area of Weld 

 
Std. Dev. 0.6295 R² 0.9882 

Mean 39.46 Adjusted R² 0.9776 

C.V. % 1.60 Predicted R² 0.9077 

  Adeq Precision 27.6746 

 
 
      The Predicted R² value of 0.9077 closely aligns with 
the Adjusted R² value of 0.9776, with a difference of under 
0.2. This indicates that the expected and adjusted R2 
values are in a decent agreement, suggesting that the 
model provides a good fit to the data. Furthermore, the 
Adeq Precision metric, in which the signal-to-noise ratio 
is measured, is a valuable indicator of model reliability. 
When a ratio exceeds 4, it is generally considered 
desirable, and in your case, the model exhibits a ratio of 
27.675. This high Adeq Precision value indicates that the 
model offers an adequate signal-to-noise ratio, making it 
suitable for navigating the design space effectively. 

      The anticipated values and the actual values were 
compared in order to pinpoint values or groups of values 
that the model would not have been able to easily 
pinpoint. This comparison is shown with an emphasis on 
surface area in Figure 2. For every response, a Cook's 
distance plot was created in order to look for any possible 
outliers in the experimental results. Cook's distance 
computes the possible effect on the regression of 
removing a certain point. To rule out outliers, greater 
attention should be paid to points with abnormally high 
distance values in comparison to the others. Figure 3 
displays the surface area Cook's distance plot. 

 
 

 
 
               Figure 2: Plot of Predicted Vs Actual for surface area of weld 
 
      Figure 2 demonstrates how the dots are densely 
clustered close to the fitted line. This demonstrates that 
the model successfully estimates the majority of the data 
points. This is a sign that the forecast accuracy and 
inclination of the developed model are sufficient. 
      Figure 3A and 3B shows 3D surface plots analyse the 
impacts of voltage and current on the surface area. Figure 

4A describes 3D surface plots were made to investigate 
the impacts of surface area on gas flow rate and current. 
The contour plots in Figure 4B illustrate the surface area 
of the weld response parameter in comparison to the ideal 
voltage and gas flow rate, as well as the 3D surface plots 
in Figure 6 were created to explore the impacts of voltage 
and gas flow rate on surface area.  
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Figure 3: (A) Impact of voltage and current  on surface area (B) Effect of gas flow rate and current  on surface area 
 
 
 
 

       
 
 
Figure 4 (A): Effect of voltage and gas flow rate  on surface area of weld (B) Predicting surface area of weld using contour 
plot 
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3.2 Modelling and prediction using artificial 
neural network (ANN)    
 
      The analysis was useful in determining the exact 
mathematical connection between the output variable 
(surface area) and the input parameters (gas flow rate, 
voltage, and current). Two crucial factors were taken into 
consideration in the effort to achieve an ideal network 
layout that offers the best precision in understanding the 
relationship between the data's input and output. The 
initial component included choosing the most precise 
learning rule or training algorithm. Secondly, it was also 
thought about how many hidden neurons there might be 
in the network. Considering various factors, a range of 
training algorithms and varying number of hidden neurons 
were selected, and they were then exposed to 
experimental analysis. The primary aim was to pinpoint 
the optimal training algorithm and the most appropriate 
number of hidden neurons that, when employed together, 
result in the most precise and efficient network 
configuration. This decision-making procedure depended 
on the evaluation of R² (coefficient of determination) and 
MSE (Mean Squared Error) values to assess model 
performance and accuracy. Regarding the Artificial 
Neural Network (ANN) analysis, MATLAB R2022a was 
the software of choice. To begin, the data was 
meticulously organized and stored within a dedicated 
folder in the MATLAB environment. Following this, a 
normalization procedure was applied, converting the data 
to a numeric matrix format. This normalization process 
automatically determined the dataset's range. Finally, the 
import function was used to seamlessly bring the data into 
the MATLAB environment, facilitating subsequent 
analysis and modelling tasks.  The training approach for 

Levenberg-Marquardt Back Propagation, known as the 
enhanced second-order gradient technique, has been 
determined as the most suitable learning rule and, as a 
result utilized in crafting the network structure. The 
Levenberg-Marquardt Back Propagation training 
algorithm was specifically set up with a network of twenty 
hidden neurons. There are one (1) output processing 
element and three (3) input processing elements (PEs) in 
this network. Twenty hidden neurons were chosen for 
each layer, and Mean Squared Error (MSE) and 
coefficients of determination (r2) were used to track the 
network's performance closely. The hyperbolic tangent 
(tan-sigmoid) transfer function was used by the input layer 
of this network architecture to determine the layer's output 
from the input data. The linear (purelin) transfer function 
was used in the output layer, on the other hand. The input 
data had to be split up into training, validation, and testing 
sets in order to create the network. To be more precise, 
70% of the data was set aside for training, 15% for 
validation, and 15% for testing. A maximum of 1000 
training epochs were used to assess the network's 
performance. The "trainlm" function was utilized for the 
training procedure, which changes the weight and bias 
parameters using the Levenberg-Marquardt optimization 
method. It is recognized that this function is among the 
fastest backpropagation algorithms available but does 
require relatively more memory compared to other 
alternatives. With three input variables, the surface area 
was then predicted using the same network design as a 
single response variable. 
The back propagation neural network-generated network 
diagram for surface area prediction is shown in Figure 5 
and follows the architecture of the Artificial Neural 
Network (3-20

 

 
 
                   Figure 5: Model summary for predicting surface area 
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      Based on the network training diagram shown in 
Figure 9, the network performance was found to be 124. 
One (1) observation was made out of six (6) validation 
checks. This is expected, though, since normalizing the 
raw data resolved the weight bias issue. Important 

components such as the gradient function, training gain 
(Mu), and validation tests are shown in Figure 6, which 
also shows the training state. A full grasp of the training 
process and its associated components is made possible 
by this all-encompassing image. 

 

 
 
                    Figure 6: Performance curve of trained network for predicting surface area 
 
 
      Backpropagation is a technique employed in artificial 
neural networks to assess the error impact of every 
neuron following a training batch of data. In essence, this 
process entails the neural network calculating the 
gradient of the loss function to elucidate the extent of 
mistake attributed to each of the chosen neurons. It's 
crucial to remember that a lower error value is more 
appealing. The computed gradient value of 6.2244x 1014, 
as visualized in Figure 6, signifies that the chosen 
neurons' errors involvement are exceedingly minimal. 
Momentum gain (Mu) serves as an algorithmic control 

parameter utilized in training the neural network. This 
parameter is essential to the training process and must 
adhere to a value less than unity. A momentum gain of 
1x10-7, as indicated here, is indicative of a network with 
substantial predictive capability, especially in relation to 
surface area. For further insight into the correlation 
between the input parameters (current, voltage, and gas 
flow rate) and the target parameter (surface area), as well 
as an overview of the training, validation, and testing 
progress, please refer to Figure 7, which presents a 
regression plot. 
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                         Figure 7: Regression plot showing the progress of training, validation and testing 
 
 
5.  CONCLUSION 
 
      In this research, the surface area of Tungsten inert 
gas-mild steel welds was optimized and predicted using 
the Response Surface approach and artificial neural 
network methods. The input parameters in this study 
encompass gas flow rate, voltage, and current, whereas 
the response parameter is the surface area of the weld. 
It's noteworthy that how these input parameters are 
related to one another and the corresponding responses 
is best described by a quadratic model. A sequential sum 
of squares test was used to make this conclusion, and the 
results indicated the significance of the quadratic model 
as seen by its incredibly low p-value ( 0.0001). 
Furthermore, when examining the model summary 
statistics across all the responses, it becomes evident that 
these models exhibit strong predictive capabilities. Each 
of them boasts an R² value of approximately 90%, 
signifying the robustness and accuracy of the models in 
predicting outcomes. Additionally, it's noteworthy that 
these models do not exhibit a noticeable lack of fit, as 
evidenced by their p-values (> 0.005). All together, the R² 
values exceeding 0.9 emphasize the strength of these 
models and their effectiveness in predicting optimal 
values for the responses, particularly in the context of 
attaining welds of superior quality. Lastly, the variance 
inflation factor (VIF) value of 1.00 conforms to demands, 
further affirming the model's suitability for the analysis. 
According to the study, artificial neural networks can 
accurately predict the responses indicated above while  

 
 
welding mild steel plates using tungsten inert gas.  The 
experimental design was selected as the central 
composite design, which was generated by the design 
expert program (version 13.0). For a welded joint with a 
surface area of 40.670 and a desirability value of 0.918, 
the RSM analysis gave optimal solutions with current of 
160.000 amps, voltage of 21.280 volts, and gas flow rate 
of 14.667 lit/min. The RSM methodology was contrasted 
with the artificial neural network model, which was used 
to project the parameters of the outcome. The Artificial 
Neural Network is chosen as the inferior prediction model 
derived from the results since it has a lower coefficient of 
determination than the response surface methodology. 
 
 
REFERENCES 
 
Adame, E.V.; Aleksa, A.; Gilbert, M.R.; Cuddy, M.; Calvet, 
T.; Vizvary, Z.; Mantel, N.; Maviglia, F. and You, J.H. 
(2022). Qualification and testing of joining development 
for DEMO limiter component. Fusion Engineering and 
Design, 180:113164. 
Behrens, B. A.; Uhe, J.; Petersen, T.; Nürnberger, F.; 
Kahra, C.; Ross, I. and Laeger, R. (2021). Contact 
geometry modification of friction-welded semi-finished 
products to improve the bonding of hybrid 
components. Metals, 11(1):115-126. 
 

 
                                                   103.  Mabiaku et al 



 

 
 

 
Benedetti, M.; Du Plessis, A.; Ritchie, R. O.; Dallago, M.; 
Razavi, S. M. J. and Berto, F. (2021). Architected cellular 
materials: A review on their mechanical properties 
towards fatigue-tolerant design and fabrication. Materials 
Science and Engineering: R: Reports, 144, 100606. 
 
Davis, J.; Atmeh, M.; Barakat, N. and Ibrahim, A. (2021). 
Design and performance simulation of a triboelectric 
energy harvester for total hip replacement implants. 
In Health Monitoring of Structural And Biological Systems 
XV. SPIE. (11593):232-244 
 
Derazkola, H. A. and Simchi, A. (2018). Experimental and 
thermomechanical analysis of the effect of tool pin profile 
on the friction stir welding of poly (methyl methacrylate) 
sheets. Journal of Manufacturing Processes. (34): 412-
423. 
 
Geng, P.; Qin, G. and Zhou, J. (2020). A computational 
modeling of fully friction contact-interaction in linear 
friction welding of Ni-based superalloys. Materials & 
Design. (185): 108244. 
 
Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M.; Gibson, 
I.; Rosen, D.; Stucker, B. and Khorasani, M. (2021). 
Directed energy deposition. Additive Manufacturing 
Technologies. 285-318. 
 
Ho, Q. B. and Kontopoulou, M. (2022). Improving the 
adhesion and properties in the material extrusion of 
polypropylene by blending with a polyolefin 
elastomer. Additive Manufacturing, 55, 102818. 
 
Inamke, G. V.; Pellone, L.; Ning, J. and Shin, Y. C. (2019). 
Enhancement of weld strength of laser-welded joints of 
AA6061-T6 and TZM alloys via novel dual-laser warm 
laser shock peening. The International Journal of 
Advanced Manufacturing Technology. (104): 907-919. 
 
Jabar, S.; Barenji, A. B.; Franciosa, P.; Kotadia, H. R. and 
Ceglarek, D. (2023). Effects of the adjustable ring-mode 
laser on intermetallic formation and mechanical 
properties of steel to aluminium laser welded lap 
joints. Materials & Design. (227):111774. 
 
Liu, J.; Zhang, Y.; Zhang, L.; Xie, F.; Vasileff, A. and Qiao, 

S. Z. (2019). Graphitic carbon nitride (g‐C3N4)‐derived N‐
rich graphene with tuneable interlayer distance as a high‐
rate anode for sodium‐ion batteries. Advanced 
Materials, 31(24): 1901261. 
 
McCrea, J.; Palumbo, G.; Tomantschger, K. and Limoges, 
D. L. (2023). U.S. Patent Application No. 18/101,835. 
 
 

 
Pang, M.; Li, J.; Al_Tamimi, H. M.; Elkamchouchi, D. H.; 
Ponnore, J. J. and Ali, H. E. (2023). Development of 
hybrid ANFIS-GAN-XGBOOST models for accurate 
prediction of material removal rates from PCB-polluted 
concrete surfaces using laser technology for sustainable 
energy generation. Advances in Engineering 
Software. (184):103500. 
 
Sejani, D.; Li, W. and Patel, V. (2022). Stationary shoulder 
friction stir welding–low heat input joining technique: a 
review in comparison with conventional FSW and bobbin 
tool FSW. Critical Reviews in Solid State and Materials 
Sciences, 47(6):865-914. 
 
Singh, J. and Shahi, A. S. (2018). Weld joint design and 
thermal aging influence on the metallurgical, sensitization 
and pitting corrosion behavior of AISI 304L stainless steel 
welds. Journal of Manufacturing Processes. (33):126-
135. 
 
Song, W.; Liu, X.; Wang, P.; Liu, Y. and Berto, F. (2022). 
Strength mismatch effect on residual stress of 
10CrNi3MoV steel considering the back-chipping 
process. International Journal of Pressure Vessels and 
Piping, (195):104570. 
 
Vasilev, M.; MacLeod, C.; Javadi, Y.; Pierce, G. and 
Gachagan, A. (2021). Feed forward control of welding 
process parameters through on-line ultrasonic thickness 
measurement. Journal of Manufacturing Processes, (64): 
576-584. 
 
Yaghoubi, M. and Tavakoli, H. (2022). Welded Joints. 
In Mechanical Design of Machine Elements by Graphical 
Methods Cham: Springer International Publishing. 21-34. 
 
Ye, G.; Guo, J.; Sun, Z.; Li, C. and Zhong, S. (2018). Weld 
bead recognition using laser vision with model-based 
classification. Robotics and Computer-Integrated 
Manufacturing. (52): 9-16. 

104.  Glob. J. Environ. Sci. Techno                       

Published by GJEST                                                                             2024 


