Full Length Research Paper

Preparation of Overbased Liquid Micro Emulsion Stabilizers for Halogen Containing Polymers

¹Dr. Fakinlede Julius and *²Isola Oladotun Bamiji

¹Department of Chemistry, Federal University of Technology, Akure, Ondo State, Nigeria ³Department of Chemical Sciences, Samuel Adegboyega University, P.M.B 001, Ogwa, Edo State, Nigeria *Corresponding Author's E-mail: bamijos4all@yahoo.com

Accepted 31st January, 2014

Poly (vinyl chloride) (PVC) is one of the most important commercial plastic materials, but it is thermally unstable at processing temperature. Processing of PVC at elevated temperatures requires the use of thermal stabilizers. This research work report the preparation, characterization and evaluation of metal carboxylates from fixed oils [locally available vegetable oils] that can function as PVC and or, other halogen containing polymers thermal stabilizers. A liquid micro emulsion stabilizer composition for stabilizing halogen-containing polymer consist of a micro emulsion of an overbased metal carboxylate obtained from the reaction of an oxide and/or hydroxide of a metal selected from the group consisting of sodium, potassium, calcium, magnesium, zinc and mixtures thereof, an aliphatic carboxylic acid in which the aliphatic moiety contains up to about 30 carbon atoms and carbon dioxide in the presence of a solvent for the aliphatic carboxylic acid, a promoter and a micro emulsion-forming amount of surfactant. Overbased micro emulsion stabilizers were prepared from four commercially available vegetable oils (Ground nut oil, Coconut oil, Soya oil and Palm Kernel oil).These oils were hydrolysed and the physico-chemical properties of the oils before and after hydrolyses were examined. Their micro emulsions were digested to determine the amount of metal concentration using Atomic Absorption Spectrophotometer (AAS).

Keywords: Overbased liquid micro emulsions, stabilizers, and halogen containing polymers.

INTRODUCTION

PVC is almost certainly the least naturally stable polymer in commercial use. During processing, storage and utilization, PVC degrades as it is exposed to high temperatures, high mechanical stresses or ultraviolet light, all in the presence of oxygen. Degradation of the polymer occurs by successive elimination of hydrogen chloride (HCl), which is called dehydrochlorination, yielding long polyenes (primary reaction), Scheme 1, which is consequently causing discoloration, deterioration of the mechanical properties and a lowering of the chemical resistance. Subsequent reactions of highly reactive conjugated polyenes crosslink or cleave the polymer chain, and form benzene and condensed and/or alkylated benzenes in trace amounts depending on temperature and available oxygen (secondary reactions), scheme 2.

The degradation of PVC at elevated temperatures

required in thermoplastic processing is an intrinsic characteristic of the polymer and consists of dehydrochlorination, auto-oxidation, mechano-chemical chain scission, crosslinking, and condensation reactions. This degradation must be controlled by the addition of stabilizers. The heat stabilizer must prevent the dehydrochlorination reaction that is the primary process in degradation. There are two ways the stabilizer can act: By reacting with allylic chlorides, the intermediates in the zipper degradation chain. This process should be faster than the chain propagation itself, requiring a very active nucleophile. However, the reactivity of the nucleophile should not be so high as to react with the secondary chlorine of the PVC chain, a process that rapidly exhausts the stabilizer. To be effective, the stabilizer must be associated by complex formation with polymer chlorine atoms, which means it should have a

Lewis acid character. This association should take place in regions where the polymer molecules have maximum mobility; in other words, where the conformation of the polymer can favor the degradation processes. Once the degradation starts, it is very fast and can be stopped only if the stabilizer is already associated with the chlorine atom that becomes allylic. These regions are the surfaces of the primary particles of PVC, where the stabilizer molecules are associated with the chlorine atoms. The exceptional effectiveness of such stabilizers at very low concentrations is explained by their entropically favorable position for stopping degradation. In general, these stabilizers, because of their effectiveness, prevent the formation of polyenes longer than four to five double bonds and maintain very good early color in the polymer. These stabilizers are called primary stabilizers. Scavenging the hydrogen chloride generated by degradation is another way to stop the process as the HCl is a catalyst for the chain

propagation reaction and the initiation step. However, the diffusion of HCI is quite slow because HCI is associated with the double bond where it was generated. When HCI diffuses away from the reaction centre, the zipper degradation reaction stops. The stabilizer should scavenge HCI with high effectiveness to avoid its catalytic effect in chain initiation that starts another zipper dehydrochlorination chain. Because this type of stabilizer cannot prevent the dehydrochlorination in its early stages, polyenes longer than four to five double bonds are formed. PVC discolors and the initial color is not maintained. However, by scavenging HCl, this type of stabilizer avoids the autocatalytic degradation and consequently, overall degradation is much slower. These stabilizers provide very good long term stability and are usually referred to secondary stabilizers. To have good stabilization of PVC with good early color and long term stability, the two types of stabilizer should be combined appropriately for each particular PVC formulation.

Stabilization is complicated by the fact that primary stabilizers become strong Lewis acids by reacting with the HCl that catalyzes the initiation and propagation of PVC degradation. To avoid this, secondary stabilizers should react efficiently with HCl to protect the primary stabilizers. Another possibility is to include compounds called costabilizers in the system. Co-stabilizers form relatively stable complexes with the chloro derivatives of primary stabilizers (the Lewis acids) and suppress their degradative effect.

The main classes of thermal stabilizers in current use are lead salts, metal soaps and organo-tin compounds. Some of these have disadvantages in terms of toxicity, environmental pollution and/or high cost (Lin et al., 2006). The metal soaps and organo-tin stabilizers are safer than lead salts, but their stabilization effects are usually lower than those of lead salts. In fact, calcium and zinc soaps of some seed oils had been investigated and proved to be save thermal stabilizers of PVC (Folarin and Sadiku, 2011). As a result of the worldwide increase in environmental awareness, attention is currently being focused on thermal stabilizers that are non-toxic and environmentally friendly (Bao et al., 2008). Thermal stabilizers of PVC possess one or more of the following features in addition to capacity for absorption and neutralization of HCl evolved by PVC during degradation:

1. An ability to replace or displace active, labile substituent groups, such as tertiary and allylic chlorine atoms

2. A capacity to render pro-degradant substances e.g. heavy metal chlorides, inactive and

3. An ability to modify chain reactions, by interrupting conjugated polyene formation and inhibiting the elimination of HCl.

An ideal stabilizer should possess a number of desirable secondary attributes. Such stabilizers should be colourless, compatible and non-migrating. It should be relatively inexpensive, non-toxic, odourless and tasteless, and should not affect the polymer's physical and rheological characteristics.

Experimental

The vegetable oils were bought in their pure form from the surrounding area of the Federal University of Technology Akure, Ondo State, Nigeria. The oils were hydrolysed by refluxing 10g of each sample with 150ml of 0.5N ethanolic potassium hydroxide for one hour. Distilled water H_2O (150ml) was added and acidified with dilute hydrochloric acid (about 60ml) followed by addition of 150ml of hexane [3]. The hexane layer was removed using a separatory funnel. The sample oils and the hydrolyzed fatty acids obtained were characterized. All chemical used for this experiment are of analytical grade

(sigmoid and Merck) and the weighing balance used was mettler balance model AE 160. Into a 3-L resins flask, was charged paraffinic oil (176.2 g), oleic acid obtained from the hydrolyzed oil samples (216.6 g), ZnO (31.2 g) and 20 ml of water. The mixture was heated to 104° C. with vigorous agitation until the contents became clear. The reaction temperature was increased to 140[°] C. and 15 ml water was removed. An additional 31.2 g of ZnO was added to the flask and agitation was continued for 5 minutes. 15 grams of sorbitol was then added and the reaction temperature was increased to 180° C. 20 grams of glycerin was charged and after a few minutes of agitation, carbonation was started at the rate of 240 ml/min of CO₂ for 5 hours. The reaction product was then filtered off solid materials. A brown product having 9.42 weight % zinc (5 weight % Zn as oleate and 4.42 weight % Zn as zinc carbonate) and a viscosity at 25^oC of 1165 cP was obtained (Fakinlede et al., 2003).

Digestion Procedure

About 0.5 g sample was weighed into dry, clean PTFE digestion vessel. One milliliter of double distilled water (DDW) was added first and then supplied with appropriate digestion mixture: HNO_3/H_2SO_4 , 2 + 1 (v/v) for wet digestion. When the initial reaction has subsided, vessel contents were gently mixed and heated, first at low temperature (about 125 °C), then the temperature was gradually increased until heavy evolution of fumes ceases. The mixture was then heated again until complete digestion. The final residue (sulfuric acid and inorganic constituent) was dissolved in 2.5 ml of HCl and diluted to 50 ml with DDW. The same digestion procedures were carried out for blank solution, AOAC: Association of Analytical Communities, 1990

Atomic absorption analysis of samples

The digested microemulsion samples were analyzed for zinc metals concentration using Atomic Absorption Spectrophotometer, A Analyst 400, S/N 201S10114102 Auto sampler Model (Chem. Tech. Analytical) at the Central Science Laboratory Obafemi Awolowo University, Ile-Ife, Nigeria.

Physicochemical properties

Moisture content

The moisture content was obtained by using a known weight of the oil sample put into a clean previously weighted beaker and dried in an oven at 105° C for 4 hours. The sample was taken from the oven, cooled in a

Properties	Soya oil	palm kernel oil	groundnut oil	coconut oil
Refractive index	1.472	1.457	1.467	1.462
Specific gravity	0.941	0.903	0.908	0.907
Viscosity (cp)	253.28	111.74	433.67	403.39
lodine value	4.6145	5.1914	9.2290	6.9218
(meq/ kg oil)				
Saponification value	16.27	33.09	39.83	31.97
(mg KOH/ g oil)				
Acid value	0.300	0.630	0.360	0.180
(mg KOH/ g oil)				
Free fatty acid	15.00	31.50	18.00	9.00
(% as oleic acid)				
Peroxide value	10.00	05.00	40.00	15.00
(meq peroxide/ kg oil)	2.835	1.705	0.95	2.705
% Moisture contents	2.81	1.69	0.99	2.70

Table 1. Physicochemical characteristics of the four vegetable oils

*Viscosity for palm kernel oil was carried out on a water bath at 60 °C

Table 2. Physicochemical characteristics of fatty acids of the four vegetable oils

Properties	Soya f.a	Palm kernel f.a	Groundnut f.a	Coconut f.a
Refractive index	1.351	1.354	1.349	1.359
Specific gravity	0.962	0.959	0.963	0.961
Viscosity (cp)	18.03	22.37	17.78	24.96
lodine value	3.7013	1.5863	2.115	0.5288
(meq/ kg oil)				
Saponification value	0.45	0.22	0.11	0.34
(mg KOH/ g oil)				
Acid value	****	0.32	****	****
(mg KOH/ g oil)				
Free fatty acid	****	2.820	****	****
(% as oleic acid)				
Peroxide value	30.00	15.00	25.00	5.00
(meq peroxide/ kg oil)				
% Moisture contents	92.88	93.10	96.92	96.67

f.a- fatty acid, **** Undetermined

desiccator for about 30 minutes and then weighed. The procedure was repeated until a constant weight was obtained. The percentage moisture in the oil was then calculated.

Moisture, $\% = \frac{\text{Original weight} - \text{Final weight}}{\text{Original weight}}$ x 100

And Dry matter, % = 100 – moisture, %

The refractive index was determined with calibrated Abbey refractometer using methods described by Dawodu and Omole (2000). The specific gravity of the sample oil was measured using specific gravity bottle and following the procedures described by Pearson 1976 [8] both refractive index and specific gravity were determined at ambient temperature of 25 + 0.5 °C. The acid, free fatty acid and perioxide values were determined and calculated according the to (2000). While recommendation of AOAC the saponification and iodine values were determined by standard method of AOAC (Association of Analytical Communities, 2000).

RESULT AND DISCUSSION

Calculations

Equation of Reaction:

2 CH₃ {CH₂}₇CH=CH {CH₂}₇COOH +2ZnO + CO₂ \rightarrow [CH₃ {CH₂}₇COO]₂ Zn + ZnCO₃ + H₂O. Mole ratio of Oleic Acid to Zinc Oxide = 1:1, Molar Mass of Oleic Acid = 282g⁻¹mole. Amount in mole of Oleic acid = 216.6g/282g⁻¹mole = 0.768 mole

Mole of Zinc Oleate = 0.768/2 = 0.384 mole, Mass of

Sample	Colour	Zn (mg/l)	Viscosity at 25°C (cP)	
SY	Golden yellow	36.00	144.3431	
РК	Brown	28.70	194.2944	
GN	Deep Brown	79.40	221.0303	
CN	Yellow	34.30	168.0407	

Table 3. Concentration of Zinc (Zn) in mg/l of the microemulsion

Blank (mg/l): 0.00, Dilution factor (df) = 50/0.5 = 100

Table 4 % Concentration of Zinc (Zn) in the microemulsion

Sample	% Zn in the microemulsion	% Zn as Oleate	% Zn as Carbonate
SY	7.20	5.68	1.52
PK	5.74	5.68	0.06
GN	15.88	5.68	10.20
CN	6.86	5.68	1.18

Method	: Zn Determi	nation		1	Page 1	Date: 9/27/2012 4:50:55 PM
			۹. s			
Analys	is Begun			1		
Logged	In Analyst:	AAnalyst	200		Technique: 2	AA Flame
Spectr	ometer Model	: AAnalyst	2 400, S/N	20151011410	2Autosampler	Model:
Sample	Information	File: C:	data-AA\AA	nalyst 200	Sample Inform	mation\Isola Zn.sif
Batch	ID:					
Result	s Data Set:	Isola Olad	lotun	·		
Result	s Library: C	:\data-AA	AAnalyst 2	00\Results	Results.mdb	
Sequen	ce No.: 36			Autosampler	Location:	
Sample	ID: Blank				Date Collect	ced: 9/27/2012 4:47:24 PM
Analys	τ:				Data Type: (Driginal
Peplic	Data . B1					
Replic	SampleConc	StndConc	BlnkCorr	Time	Signal	
#	mg/L	mg/L	Signal		Stored	
1		[0.00]	0.100	16:47:26	Yes	
2	-	[0.00]	0.098	16:47:30	Yes	
3		[0.00]	0.104	16:47:34	Yes	
Mean:		[0.00]	0.101			
SD:		0.00	0.0028			
%RSD:		0.00	2.77			
Auto-z	ero performe	ed.				
Sequen	ce No.: 37				Autosampler	Location:
Sample	ID: Sample	GN			Date Collect	ed: 9/27/2012 4:48:03 PM
Analys	t:				Data Type: C	Driginal
Replic	ate Data: Sa	mple GN	BinkCom	Time	Gianal	
#	mg/J.	mg/T.	Signal	TTWE	Stored	
1	0.796	0.796	0.563	16:48.05	Veg	
2	0.792	0.792	0.560	16:48.09	Yes	
3	0.794	0.794	0.561	16:48:14	Yes	and the second s
Mean:	0.794 × 100	0.794	0.561			
SD:	0.002	0.002	0.0013			17.4 mg/L
%RSD:	0.274	0.274	0.24			0
				in the second	and a second	
Sequen	ce No.: 38				Autosampler	Location:
Sample	ID: Sample	CN			Date Collect	ed: 9/27/2012 4:48:50 PM
Analys	t:				Data Type: C	Driginal
Replic	ate Data: Sa	mple CN	Plakow	mime	Ci are 1	
#	sampieconc	stnaConc	BinkCorr	Time	Signal	
1	0 345	0 345	0 275	16.49.50	Voc	
2 *	0.340	0.340	0 272	16.48.56	Vec	
3	0.345	0.345	0.275	16.49.01	Ves	
Mean	0.343	0.343	0.274	10,49.01	165	212211
SD:	0.003	0.003	0.0018			2 345 mg/L
&RSD:	0.792	0.792	0.66			
Sequen	ce No.: 39				Autosampler	Location:
Sample	ID: Sample	SY			Date Collect	ed: 9/27/2012 4:49:33 PM
analys	τ:				Data Type: C	riginal
Replic Repl	ate Data: Sa SampleConc	mple SY StndConc	BlnkCorr	Time	Signal	
					and the second	

i

Method	l: Zn Dete	rmination			Page 2		Dat	te: 9/27/2	012 4:50:55 PM
	-	-				_			
#	mg/L	mg/L	Signal	16 10 0	Store	d			
T	0.360	0.360	0.285	16:49:3	5 Yes				
2	0.357	0.357	0.283	16:49:3	9 Yes				
3	0.364	0.364	0.287	16:49:4	4 Yes				
Mean:	0.360	0.360	0.285			21	0 00 1		
SD:	0.003	0.003	0.0021			Z 36'	ornal		
%RSD:	0.871	0.871	0.73				0		
=====			========	=================			========		
Sequer	TD: Comp	0 lo PK			Autosan	pler Locati	on:	E0.11 DV	
Analys	th: Samp	TE FK			Date Co	Difected: 9/	2//2012 4	SOULT PM	
Anarys					Data Iy	pe: Origina	1		
Replic	ate Data:	Sample PK							
Repl	SampleCo	nc StndConc	BlnkCorr	r Time	Signa	.1			
#	mg/L	mg/L	Signal		Store	d			
1	0.285	0.285	0.235	16:50:12	2 Yes				
2	0.286	0.286	0.235	16:50:1	7 Yes				
3	0.290	0.290	0.238	16:50:2	1 Yes			4.	
Mean:	0.287	0.287	0.236				00.7	11	
SD:	0.002	0.002	0.0017			2	281	mall	
%RSD:	0.868	0.868	0.72					\bigcirc	
Calibr	ation dat	a for Zn 213	.86		Equat	ion: Nonlin	ear Throug	h Zero	
			I	Entered Cal	lculated				
		Mean S:	ignal	Conc.	Conc.	Standard			
	ID	(Ab:	s)	mg/L	mg/L	Deviation	%RSD		
	Blank	0.0	000	0	0.000	0.00	2.8		
Cal	ib Std 4	0.10	037	0.1	0.106				
Cal	ib Std 5	0.1	699	0.2	0.193				
Cal	ib Std 6	0.30	013	0.4	0.384				
Cal	ib Std 7	0.3	778	0.5	0.502				
Cal	ib Std 8	0.65	936	1.0	1.009				
Correl	ation Coe	f.: 0.999581	Slope:	1.41912	Intercept	: 0.00000			
							1		
						1 miles			

- ZnCO3 = 90 × 0.384 = 34.58g {RMM of ZnCO3= 90}. Mass of Zinc in Zinc Oleate = (62.4- 34.58) g = 27.82g . % of Zinc as Oleate in the reaction vessel = (27.82/490.2) × 100 = 5.68 %
- From Table 1, Coconut oil has the lowest acid value (0.18 mg KOH/g of oil) and free fatty acid (9.00 % as Oleic Acid) among the four vegetable oils and Palm kernel oil has the highest Acid value (0.63 mg KOH/g of oil) and free fatty acid (31.50 % as Oleic Acid). Coconut oil has a very low unsaturated fatty acid. The Groundnut oil had high iodine values (9.229 meg/kg oil) and perioxide value (40 meg perioxide/kg of oil, thus reflecting a high degree of unsaturation and primary oxidation respectively. The values obtained for the physicochemical properties of the four vegetable oils after hydrolysis decreases except for the moisture content that increases significantly due to the removal of glycerol formed as part of the product of hydrolysis. However, comparing the physicochemical properties of the hydrolysed oil in Table 2, the fatty acid of the Soya oil has the highest iodine value (3.7013 meq/kg of fatty acid) and saponification value (0.45 mg KOH/g fatty acid) and perioxide value (30 meg perioxide/kg of fatty acid). Only Palm kernel oil shows a positive result for free fatty acid after hydrolysis (2.820 % as Oleic). Micro emulsion from palm kernel oil has the lowest % of Zn as Zinc Carbornate (0.27%) which shows that the higher the amount of Oleic Acid in the sample the less the amount of Zinc carbonate that will be formed. After digestion, a product having 15.88 weight % zinc (5.68 weight % Zn as oleate and 10.20 weight % Zn as zinc carbonate), 7.2 weight % zinc (5.68 weight % Zn as oleate and 1.52 weight % Zn as zinc carbonate), 6.86 weight % zinc (5.68 weight % Zn as oleate and 1.18 weight % Zn as zinc carbonate), 5.74 weight % zinc (5.68 weight % Zn as oleate and 0.06 weight % Zn as
- zinc carbonate) were obtained for ground nut oil, soya oil, coconut oil and palm kernel oil respectively

CONCLUSSION

The physico-chemical properties of four commercial vegetable oils have been studied for their industrial application. The colour of their micro emulsions varies from yellow to dark brown. Three of the oils are liquids at room temperatures and one (Palm kernel oil) is semi-solid. Ground nut oil has the highest % of zinc after carbonation, followed by Soya oil and Coconut oil. The results obtained from this study could be used as baseline data to develop a good micro emulsion stabilizers from the oils examined for

the formulation of heat and chemical resistant halogen containing polymers (e.g PVC).

REFERENCE

- Fakinlede J, Metuchen, NJ, Fisch Michael H, Wayne, NJ, Stewen U, Schwerte, DE, Bacaloglu R, Hamburg, NY, Mukund S, Hazlet NJ, Bacaloglu IIze, Hamburg, NY, Farahat WI, Harrington Park NJ (2003).
 Overbased metal carbonate/carboxylate microemulsions and halogen-containing polymers containing same. P 3-4
- Folarin OM, Sadiku ER (2011). A review on thermal stabilizers for poly (vinyl chloride), Int. J. Phys. Sci. 6(18):4323-4330.
- Christie WW (2002, 3rd edition) . Lipid Analysis, the Oily Press, Bridgwater, UK.
- Lampi, A-M, Piironen V, and Toivo J. Analysis of phytosterols in foods. In Phytosterols as Functional Food Components
- and Nutraceuticals (Dutta, P. C., ed.), Marcel Dekker, New York, (2004). 33–70.Lin Y, Wang J, Evans DG,

Li D (2006). Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin. J. Phys. Chem. Solids, 67:998-1001.

- Bao Y, Huang Z, Li S, Weng Z (2008). Thermal stability, smoke emission and mechanical properties of poly (vinyl chloride)/hydrotalcite nanocomposites. Polym. Degrad. Stab., 93:448-455.
- A.O.A.C: Association of Analytical Chemist (2000, 7th edition). Official method 920.160 Saponification number of oils and fats / IUPAC 2. 202 / I.S.I Handbook of Food Analysis (Part XIII) 1984:78.
- Dawodu FA, Omole O (2000). The use of additives in liquid-liquid equilibrium to improve efficiency of extraction processes Niger. J. Sci. 34(2):157-164.
- A.O.A.C:Association of Analytical Chemist (2000). Official method 920.212 Specific gravity (Apparent) of Oils, Pycnometer method / I.S.I. Hand book of Food analysis (Part XIII) 1984:72.
- A.O.A.C: Association of Analytical Chemist15th edn., 1990. Official Methods of Analysis, AOAC International, Arlington, VA, USA, 1990:778