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A two-dimensional steady and laminar incompressible flow in a corrugated enclosure is analyzed 
numerically. Two types of corrugation (vee and sinusoidal) on vertical walls of the enclosure are 
considered. In this analysis, two vertical corrugated walls are maintained at a constant low 
temperature, a constant heat flux source whose length is 40% of the total length of the enclosure is 
discretely embedded at the bottom wall, the non-heated part of the bottom wall and the top wall are 
considered adiabatic. The pressure velocity form of the Navier-Stokes equations and energy equation 
are used to represent the mass, momentum and energy conservations of the fluid medium in the 
enclosure. The Galerkin finite element method has been used to see the effect of corrugation geometry 
on heat transfer for different Grashof numbers. The average Nusselt number at the heat source surface 
for different corrugated enclosures are compared with each other. Results are presented in the form of 
streamline and isotherm plots. 
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INTRODUCTION 
  



 

 

Natural convection results when there is a fluid density 
gradient in a system with a density-based body force 
such as the gravitational force. It has been studied 
extensively, both experimentally and numerically, 
because of its various applications in engineering, such 
as thermal control in electronic equipment, nuclear 
reactors, solar collectors, and chemical vapor deposition 
reactors etc. Heat transfer by natural convection depends 
in the convection currents developed by thermal 
expansion of the fluid particles. Further, the development 
of the flow is influenced by the shape of the heat transfer 
surfaces. Therefore, the investigation of thermal and fluid 
flow behaviors for different shapes of the heat transfer 
surfaces is necessary to ensure the efficient performance 
of the various heat transfer equipments. Several 
investigations have been carried out on natural 
convection heat transfer and fluid flow with corrugated 
surfaces. (Chinnappa,1970) carried out an experimental 
investigation on natural convection heat transfer from a 
horizontal lower hot V-corrugated plate to an upper cold 
flat plate. He took data for a range of Grashof numbers 
from 10

4
 to 10

6
. Randall et al., 2000 studied local and 

average heat transfer coefficients fro natural convection  
between a V-corrugated plate and a parallel flat plate to 
find the temperature gradient to estimate the local heat 
transfer coefficient. Local valued of heat transfer 
coefficient were investigated over the entire Vee-
corrugated surface area. Using control volume based 
finite element method; Ali and Husain, 1992 investigated 
the natural convection heat transfer and flow 
characteristics in a square duct of V-corrugated vertical 
walls. Ali and Husain, 1993 also investigated the effect of 
corrugation frequencies on natural convective heat 
transfer and flow characteristics in a square enclosure of 
vee-corrugated vertical walls. This investigation showed 
that the overall heat transfer through the enclosure 
increases with the increase of corrugation for low Grashof 
number; but the trend is reversed for high Grashof 
number. Later Ali and Ali, 1994 carried out a finite 
element analysis of laminar convection heat transfer and 
flow of the fluid bounded by vee corrugated vertical 
plated of different corrugation frequencies. An enclosure 
with corrugated bottom surface maintaining a uniform 
heat flux and flat isothermal cooled top surface and side 
walls adiabatic wad studied by Noorshahi et al., 1992. 
The results showed that the pseudo-conduction region is 
increased with increase of wave amplitude. Yao, 1983 
has studied theoretically the natural convection along a 
vertical wavy surface. He found that the local heat 
transfer rate is smaller than that of the flat plate case and 
decreased with increase of the wave amplitude. The 
average Nusselt number also shows the same trend. 
Adjlout et al., 1997 reported a numerical study of the 
effect of a hot wavy wall in an inclined differentially 
heated square cavity. Tests were performed for different 
inclination angles, amplitudes and Rayleigh numbers for 
one and three undulation. The trend of the local heat 
transfer is wavy.  

In this investigation, a natural convection problem has 
been solved for different corrugation geometry and air 

has been taken as the working fluid. The corrugation 
geometry and the coordinate systems are shown in 
Figure 1 below.  It consists of a vee-corrugated enclosure 
and a sinusoidal enclosure of dimension, W×H.  In this 
work, two vertical walls are maintained at a constant 
temperature Tc, a constant heat flux, q is discretely 
embedded at the bottom wall, and the remaining parts of 
the bottom surface and the upper wall are considered to 
be adiabatic.  The aspect ratio of the enclosure is defined 
as A = H / W and the corrugation amplitude has been 
fixed at 4% of the enclosure height. The Grashof number, 
Gr is varied from 10

3
 to 10

6
, the ratio of the heating 

element to the enclosure width, L / W  and is taken as 

0.4 and Prandtl number, Pr is taken as 0.71. 
 
 
Mathematical Model 
 
Natural convection is governed by the different equations 
expressing conservation of mass, momentum and 
energy. In the present study, we consider a steady two-
dimensional laminar flow of incompressible fluid. The 
viscous dissipation term in the energy equation is 
neglected. The Boussinesq approximation is invoked for 
the fluid properties to relate density changes to 
temperature changed and to couple in this way the 
temperature field to the flow field. Then the governing 
equations for steady natural convection can be 
expressed in the dimensionless form as: 
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where U and V are the velocity components in the X 
and Y directions, respectively,   is the temperature, P is 

the pressure, and  is the inclination angle of the 
enclosure with the horizontal direction, Gr and Pr  are the 
Grashof number and Prandtl number, respectively, and 
they defined as: 

3

2

g TW
Gr and Pr

 
 


 (5) 

The dimensionless parameters in the equations above 
are defined as follow: 
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e ρ, β, υ, α and g are the fluids density, coefficient of 
volumetric expansion, kinematic viscosity, thermal 
diffusivity, and gravitational acceleration, respectively. 
The corresponding boundary conditions for the above 
problem are given by: 
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Table 1: Comparison of the results for various grid dimensions at Gr = 10
6
 (Vee corrugated) 

 

Elements 1688 1976 2962 3526 4624 4788 6240 

Nu 10.33007 10.33791 10.33934 10.34225 10.34243 10.34254 10.34255 

 

                             Table 2: Comparison of the results for various grid dimensions at Gr = 10
6
 (Sinusoidal 

corrugated) 

 

Elements 1664 1972 2900 3770 4574 4740 6116 

Nu 10.34106 10.33851 10.33622 10.33540 10.33160 10.33025 10.329838 

 

                                    Table 3: Average Nusselt number on the heated surface 

 

Grashof number 

Nusselt number 

Vee 
corrugation 

Sinusoidal corrugation 

10
3
 4.169 4.210 

10
4
 4.208 4.246 

10
5
 5.946 5.930 

10
6
 10.343 10.330 
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The average Nusselt number can be written as, 

 0 S

1 1
Nu dX

X




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where θS(X) is the local dimensionless temperature. 
The Simpson’s 1/3 rule is used for numerical integration 
to obtain the average Nusselt number.  
 
 
Numerical Procedure 
 

The set of nonlinear ordinary differential equations (1)-
(4) with boundary conditions are non-linear and coupled. 
It is difficult to solve them analytically. Hence we adopt an 
iterative scheme to obtain the solution numerically. The 
application of this technique is well documented Reddy, 
1993. The continuity equation (1) will be used as a 
constraint due to mass conservation and this constraint 
may be used to obtain the pressure distribution 
(Reddy,1993) In order to solve Eqs. (2) - (4), we use the 
Penalty finite element method (Natarajan et al., 2008) 
where the pressure P is eliminated by a penalty 
parameter. The three noded triangular elements are 
used in this paper for the development of the finite 
element equations. The convergence of solutions is 

assumed when the relative error for each variable 
between consecutive iterations is recorded below the 
convergence criterion δ such that 

n 1 n

n 1





 
 


 (7) 

where n is the Newton iteration index and  = U, V, P and 
θ. The convergence criterion set to 10

-6
. 

      To test and assess grid independence of the present 
solution scheme, many numerical runs are performed for 
higher Grashof number as shown in Table 1 and 2 above. 
These experiments reveal that a non-uniform spaced grid 
of 4788 elements for vee corrugated geometry and 4740 
elements for sinusoidal geometry are adequate to 
describe correctly the flow and heat transfer process 
inside the enclosure. In order to validate the numerical 
model, the results are compared with those reported by 
Sharif and Mohammad (Natarajan et al., 2008), for 
square enclosure with Gr = 10

6
 and ε = 0.4. In Figure. 2 

below, a comparison of the isotherm plots for Gr = 10
6
 

and ε = 0.4 of the square enclosure is presented. The 
agreement is found to be excellent which validates the 
present computations indirectly. 
 
 

RESULTS AND DISCUSSION 
 
In this investigation, the average Nusselt number  
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Figures 

 

  
(a) Vee corrugated (b) Sinusoidal corrugated 

 

Figure 1: Schematic diagram of the physical system 

  
Sharif and Mohammad [9] Present Work 

 

Figure 2: Comparison of the isotherm plots of the square straight enclosure with Sharif and Mohammad [9] at Gr = 10
6
 and ε = 0.4 
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Figure 3: Streamlines and isotherms in the enclosure for vee corrugated vertical walls 
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Figure 4: Streamlines and isotherms in the enclosure for sinusoidal vertical walls 

 
 
 
along the hot wall is examined with respect to 
Grashof numbers 10

3
, 10

4
, 10

5
 and 10

6
 for different 

shapes of corrugated walls. The corrugation 
amplitude is fixed at 4% of the enclosure. The 
working fluid is chosen as air with Prandtl number, 
Pr = 0.71.   

The main characteristics of the flow and energy 
transport are shown in the figures 3 and 4 in terms 
of streamlines and isotherms respectively for 
various Gr = 10

3
 to 10

6
. Visual examination of 

streamlines and isotherms does not reveal any 
significant difference among the different 
corrugation geometry. Because of the symmetrical 
boundary conditions on the vertical walls, the flow 
and temperature fields are symmetrical about the 
midline of the enclosure. The symmetrical boundary 
conditions in the vertical direction result in a pair of 
cells in the left and right halves of the enclosure. 
Because of symmetry, the flows in the left and right 
halves of the enclosure are identical except for the 
sense of rotation. As expected due to the cold 
vertical walls, fluids rise up from the middle portion 
of the bottom wall and flow down along the two 
vertical walls forming two symmetric rolls with 
clockwise and anticlockwise rotations inside the 
enclosure. The isotherms plots are also symmetrical 
about the vertical mid plane, the temperature 
decreases from the bottom to the top along the 
center line of the enclosure and concentrated 
towards the hot surface indicating the presence of 
large temperature gradient there. At Gr = 10

3
, the heat 

transfer is purely due to conduction. During conduction 
dominant heat transfer, the temperature contours with θ = 
0.01 – 0.03 occur symmetrically near the side walls of the 
enclosure. The other temperature contours with θ ≥ 0.04 
are smooth curves symmetric with respect to the vertical 
symmetric line. At Gr > 10

4
, the temperature gradients 

near both the bottom and side walls tend to be significant 

to develop the thermal boundary layer. Due to greater 
circulation near the central core at the top half of the 
enclosure, there are small gradients in temperature at the 
central regime whereas a large stratification zone of 
temperature is observed at the vertical symmetry line due 
to stagnation of flow. The thermal boundary layer 
develops partially within the cavity for Gr = 10

3
 whereas 

for Gr = 10
5
, the isotherms indicate that the thermal 

boundary layer develops almost throughout the entire 
enclosure. The isotherms patterns changes 
significantly with increasing Gr, indicating that the 
convection is the dominating heat transfer 
mechanism in the enclosure.  
 
 
CONCLUSION 
 
The effect of corrugation geometry on natural 
convection was investigated and analyzed 
numerically for different Grashof number and the 
streamline and isotherm plots were presented. For 
low Grashof number, the sinusoidal corrugation 
showed higher increment of Nusselt number than 
that of vee corrugation, but the trend is reversed for 
high Grashof number. Also the average Nusselt 
number increases with the increase of Grashof 
number. It can be pointed out that the decreased 
nature of heat transfer rate for corrugated geometry 
may be applied in practical situation where heat 
transfer reduction is desired across large 
temperature differences.  
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