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Abstract 

 
Machining parameter optimization is a major issue in modern manufacturing, owing to its direct impact on efficiency, 
stability, and product quality. Predictive modeling and optimization of shearing power in turning operations under 
constraints was the aim of this study, where a comparative evaluation of the usefulness of Response Surface 
Methodology (RSM) and Artificial Neural Networks (ANN) methods is provided. Three major factors affecting shearing 
power and machining behaviour are the concern of this study: depth of cut, cutting speed, and feed rate. Using well-
planned and executed experiments, the data necessary to construct predictive models was gathered. Using Response 
Surface Methodology (RSM), equations that describe the intricate interaction of these variables were obtained. Artificial 
Neural Networks (ANN) was a very effective means of modeling the intricate patterns in the data, giving a more detailed 
image of the machining process. When the two techniques were compared against each other, Artificial Neural Networks 
(ANN) emerged as the better predictive model, delivering spot-on predictions of shearing power with impressively low 
error margins and robust regression performance. While both models showed statistical effectiveness, ANN's capability 
for capturing the intricate relationships between machining variables was unparalleled. This implies that ANN could 
revolutionize process optimization, unlocking new levels of machining efficiency. By tapping into the potential of data-
driven decision-making, this work fosters smart manufacturing, enabling machine processes that are more agile, 
responsive, and self-tuning than ever before. 
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1. INTRODUCTION 
 
       In today’s manufacturing landscape, the demand for 
greater precision, efficiency, and adaptability has led to 
increased attention on machining processes operating 
under constrained conditions (Imad, 2022). Among these, 
turning remains a key operation for producing high-
accuracy components used in critical industries such as 
aerospace, automotive, and biomedical engineering 
(Singh & Singh, 2023). However, turning is highly 
sensitive to adjustments in process variables like depth of 
cut, cutting speed, and feed rate (Bazaz et al., 2023; 
Ragai et al., 2022). These factors have a direct influence 
on important outcomes such as thrust force, shearing 
power, tool wear, and surface finish (Kuang et al., 2022). 
The challenging nature of constrained machining which is 
often shaped by limitations in allowable cutting forces, 
heat dissipation, material properties, and dynamic 
interactions between the tool and workpiece, has driven 
the development of more advanced predictive and  

 
 
optimization tools (Mativenga et al., 2024). Traditional 
modeling approaches, such as empirical regression and 
analytical methods, while widely applied, often lack the 
flexibility to handle nonlinear behavior or the complex 
interplay among multiple variables (Khan et al., 2020; 
Bhowmik et al., 2019). 
        Response Surface Methodology (RSM) has proven 
to be a very effective statistical method in machining 
optimization, offering deep insights into the interaction of 
input variables and their impact on system behavior. 
Founded on second-order polynomial models, RSM is 
effective at capturing main effects, along with very subtle 
interactions. In addressing systems of relatively linear or 
slightly nonlinear trends it has been able to show its 
strength, and it has become the first choice in an 
overwhelming majority of machining applications (Asiltürk 
et al., 2021). Response Surface Methodology (RSM) has 
been successfully used to optimize machining responses  
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like surface roughness, material removal rate, and cutting 
force. Artificial Neural Networks (ANN), by contrast, take 
a more generalized method, learning from examples 
without being limited by known equations. This makes 
ANN extremely powerful at revealing intricate, nonlinear 
relationships in large data sets, a hugely desirable 
attribute for modeling a wide variety of machining 
conditions. Applications of ANN have been amply 
documented in a wide variety of machining contexts, from 
foreseeing bead geometry in TIG welding (Kesse et al., 
2020), predicting weld penetration (Chandrasekhar et al., 
2025), and equating tensile strain in welded joints 
(Igbinake, 2025). Perhaps the greatest advantage of ANN 
is the way it deals with nonlinear, real-world process 
conditions where variables are all interrelated. And 
experiments prove that it surpasses RSM in precise 
prediction and generalization to new data. For instance, 
Kshirsagar et al. (2020) reported that the integration of 
ANN and evolutionary algorithms led to phenomenal 
performance improvement in the optimization of TIG 
welding parameters, particularly in predicting bead 
features and mechanical properties. Similarly, Costa et al. 
(2023) found that ANN models were extremely effective 
in revealing complex interactions in machining data and 
surpassed RSM in the experiment. 
       Despite significant advancements, there is one 
critical knowledge gap in the field of constrained turning 
operations; shearing power prediction and maximization. 
Previous research was largely focused on individual 
response outcomes, thrust force or surface finish, and 
failed to consider the complex interaction between 
different responses against constrained situations. The 
current work bridges this gap directly by developing a 
predictive model based on the complementary strengths 
of RSM and ANN. By combining RSM's strength for 
uncovering early trends and ANN's strength for non-linear 
dynamics, an enhanced and robust model can be 
developed. Together, they provide an integrated 
complementary approach to constrained turning 
conditions. The double-model approach is in line with 
changing trends towards smart manufacturing and 
Industry 4.0, where intelligent, knowledge-based 
technologies are increasingly crucial for process 
optimization, design for minimal waste, and maximization 
of resources in real-time manufacturing systems. 
 
 
2. METHODOLOGY 
 
2.1 Research Design 
 
       The research design of this study is developed to 
deal systematically with the prediction and optimization 
challenge of machining parameters in constrained 
situations in turning operations. The study design is 
quantitative in nature, and experimental data collection 
and high-level predictive modeling are being undertaken. 
The general aim is to examine the influence of machining 

parameters (cutting depth, cutting velocity, and feed rate) 
on the main machining response (shearing power) that in 
turn will lead to the establishment of predictive models 
through Response Surface Methodology (RSM) and 
Artificial Neural Networks (ANN).  
 
 
2.2 Data Collection 
 
       The data is collected for each experimental run, and 
machining parameters are varied systematically based on 
experimental design. The data are used to construct the 
basis of the modeling effort, including precise 
measurements of shearing force. For accuracy and 
reliability, instruments are of high quality and each trial is 
replicated to include any variability. The experiment was 
designed carefully to create consistency and accuracy. 
Order trials was repeated and randomized systematically 
to minimize environmental influences and measurement 
error. Randomizing order and repeating every 
combination of level of factors multiple times permits the 
verification that the results are unbiased and reliable. By 
such means, precise and reproducible data collection is 
obtained under well established and controlled machining 
conditions, constituting the appropriate basis for 
predictive modeling and optimization phases of this work. 
 
 
2.3 Design of Experiments (DOE) 
 
       In this work, the intricacies of machine work were 
studied. A structured approach known as Design of 
Experiments (DOE) was employed to investigate the 
relationship between critical machining parameters 
(depth of cut, cutting speed, and feed rate) and the power 
consumed during cutting operations. This methodology 
enabled a systematic examination of how these variables 
interact, allowing the identification of significant effects 
that might otherwise remain undetected. By utilizing the 
well-defined framework provided by DOE, it became 
possible to analyze seemingly disordered data and isolate 
the fundamental forces that influence machining 
performance outcomes. 
 
 
2.4 Response Surface Methodology (RSM) 
 
       The study commenced with the application of 
Response Surface Methodology (RSM), which facilitated 
the development of mathematical models to evaluate the 
individual effects of key process variables. RSM also 
made it possible to observe how these variables interact 
and influence one another. Its strength lies in its ability to 
uncover complex interdependencies that may not be 
immediately apparent. By examining how operational 
changes affect outcomes, RSM serves as a powerful tool 
for identifying trends, critical points, and providing 
actionable insights. It is particularly effective for  
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interpreting underlying patterns within noisy or complex 
datasets. In this investigation, RSM functioned as the 
primary modeling framework. Predictive equations were 
constructed to accurately represent the contribution of 
each factor and their interactions. Based on the 
experimental data, a mathematical model was formulated 
to estimate shearing power as a function of three 
machining parameters: depth of cut (A), cutting speed (B), 
and feed rate (C). The model, expressed in Equation 1, 
includes linear, quadratic, and interaction terms. To 
assess the statistical relevance of each term, Analysis of 
Variance (ANOVA) was performed, allowing the model to 
remain both concise and statistically valid. Diagnostic 
evaluations, including residual analysis and goodness-of-
fit tests, were conducted to ensure model accuracy and 
reliability. With the validated model in place, RSM was 
then employed to optimize the machining conditions, 
ultimately identifying the parameter settings that yield the 
most efficient performance. 
 

𝑌 = 𝛽0 + 𝛽1𝐴 + 𝛽2𝐵 + 𝛽3𝐶 + 𝛽11𝐴2 + 𝛽22𝐵2 + 𝛽33𝐶2 +
𝛽12𝐴𝐵 + 𝛽13𝐴𝐶 + 𝛽23𝐵𝐶 + 𝜖  ……………1 
 
where: 
o β0 is the intercept, 
o β1, β2, β3  represent the main effects, 
o β11, β22, β33  represent the squared terms, 
and 
o β12, β13, β23 represent interaction effects. 
 
 
2.5 Artificial Neural Networks (ANN) 
 
       Artificial Neural Network (ANN) models were 
developed to complement the Response Surface 
Methodology (RSM) by capturing complex, nonlinear 
relationships that RSM might not fully detect. These 
models learned from experimental data and were 
structured using a typical feedforward architecture 
consisting of an input layer, one or more hidden layers, 
and an output layer. The input layer received machining 
parameters—depth of cut, cutting speed, and feed rate—
while the hidden layers processed nonlinear interactions, 
and the output layer predicted shearing power. To train 
the network and mitigate overfitting, the dataset was 
divided into training and validation subsets. During 
training, backpropagation was employed to iteratively 
adjust weights and biases, minimizing the mean squared 
error (MSE) between predicted and actual values. Key 
hyperparameters, such as the number of hidden layers, 
neurons per layer, learning rate, and activation functions, 

were fine-tuned using grid search and cross-validation 
techniques to improve the model’s generalization 
capability. Once trained, the ANN’s performance was 
evaluated using Root Mean Square Error (RMSE) and the 
coefficient of determination (R²) on the test data. The 
results demonstrated that the ANN effectively mapped 
input conditions to machining responses with high 
accuracy, confirming its advantage over traditional linear 
or polynomial-based modeling approaches. 
 
 
2.6 Model Comparison and Validation 
 
       Both RSM and ANN was put to series of experiments 
to ensure their efficiency. R² values were calculated to 
assess the predictive validity of the models and to 
compare the performance of the two modeling approach, 
highlighting their respective strengths and limitations. To 
further validate the models, cross-validation techniques 
were applied, ensuring consistency and reliability across 
the datasets. These validation steps confirmed the 
robustness of the findings under varying data conditions. 
This study effectively integrates the strengths of both 
empirical experimentation and advanced modeling to 
address complex challenges in metal cutting operations. 
By combining the statistical rigor of Response Surface 
Methodology (RSM) with the adaptive learning 
capabilities of Artificial Neural Networks (ANN), a 
comprehensive modeling framework was established that 
leverages both numerical precision and pattern 
recognition. This hybrid approach not only fulfills the 
objectives of the study but also provides practical insights 
that can be applied to a wide range of machining 
scenarios. 
 
 
3. RESULTS  
 
3.1 Experimental Results 
 
The experimental findings so obtained for this 
investigation offer an overall picture of interrelationships 
among the principal machining variables, i.e., depth of 
cut, cutting speed, and feed rate, and their influence on 
the response variable, i.e., shearing power. This kind of 
information is essential for building predictive models, 
optimizing machining conditions, and realizing the subtle 
interactions involved during the turning process. The 
results, summarized in Table 1, form the foundation for 
subsequent model building and analysis in this study

. 
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                              Table 1: Experimental Data of Shearing Power Based on Varying Parameters 
 

St
d 

R
un 

Factor 
1 

Factor 2 
Factor 

3 
Respons

e 

   

A:Dep
th of 
cut 

B:Cuttin
g Speed 

C:Feed 
Rate 

Shearing 
power 

mm m/min mm/rev W 

14 1 0.63 225 0.17 532.7 

10 2 0.63 225 0.17 599.33 

5 3 0.63 225 0.17 532.7 

9 4 0.63 225 0.17 695.33 

18 5 0.25 300 0.25 1216.2 

6 6 0.63 225 0.17 695.33 

15 7 0.63 225 0.17 532.7 

11 8 0.25 150 0.1 521 

12 9 0.63 351.13 0.17 908.6 

17 10 1 300 0.25 403.05 

20 11 0.63 98.87 0.17 589 

2 12 0.01 225 0.17 695.33 

19 13 1 300 0.1 724.8 

3 14 0.63 225 0.3 695.33 

8 15 1 150 0.25 620.48 

16 16 1 150 0.1 1129 

1 17 0.63 225 0.05 1216.2 

13 18 0.25 150 0.25 332 

7 19 1.26 225 0.17 488 

4 20 0.25 300 0.1 1321 

 
 
       Table 1 illustrates the variations in machining 
responses obtained by systematically adjusting the 
machining parameters. These data serve as the baseline 
for predictive modeling and optimization processes. 
       Table 2 presents the Sequential Model Sum of 
Squares for Shearing Power, revealing how each set of 
model terms contributes to explaining variation in the 
response. The Mean vs. Total term has the largest sum 
of squares (1.044E+07), establishing the baseline 
variation in shearing power. Adding linear terms for 
individual factors (such as depth of cut, cutting speed, and 
feed rate) explains additional variation, with a sum of 
squares of 5.171E+05, an F-value of 2.67, and a p-value 
of 0.0827, suggesting limited significance for linear terms 
alone. The addition of two-factor interaction (2FI) terms 

significantly improves the model, with a sum of squares of 
7.112E+05, an F-value of 9.58, and a p-value of 0.0013, 
indicating meaningful interaction effects among the 
machining parameters. Quadratic terms further enhance 
the model’s fit, with a sum of squares of 2.843E+05, a 
high F-value of 25.26, and a very significant p-value of < 
0.0001, justifying the inclusion of quadratic effects. In 
contrast, cubic terms add minimal explanatory power, with 
a sum of squares of only 5772.96, an F-value of 0.1819, 
and a p-value of 0.9576, indicating that further terms 
would not meaningfully improve the model. The residual 
variance remains relatively small (31740.30), supporting 
the adequacy of the quadratic model for capturing 
significant effects on shearing power. 
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                              Table 2: Sequential Model Sum of Squares for Shearing Power 
 

Source Sum of Squares df Mean Square F-value p-value  

Mean vs Total 1.044E+07 1 1.044E+07    

Linear vs Mean 5.171E+05 3 1.724E+05 2.67 0.0827  

2FI vs Linear 7.112E+05 3 2.371E+05 9.58 0.0013  

Quadratic vs 2FI 2.843E+05 3 94774.48 25.26 < 0.0001 Suggested 

Cubic vs Quadratic 5772.96 5 1154.59 0.1819 0.9576 Aliased 

Residual 31740.30 5 6348.06    

Total 1.199E+07 20 5.994E+05    

 
 
        By employing sequential SS, the analysis provides a 
clearer understanding of the individual and combined 
contributions of each factor and interaction. This method 
also highlights which terms contribute significantly to the 
model and informs further model refinement for optimal 
predictive accuracy. 
       Table 3 presents the ANOVA for the quadratic model 
used to predict shearing power. The model itself is highly 
significant (F = 44.80, p < 0.0001), which means it does a 
good job of explaining the variations in shearing power. 
The machining parameters can be thought of as 
interacting components in a mechanical system were 
each contributes differently to the final outcome. Among 
these, Feed Rate (C) emerges as the most influential 
factor, comparable to the engine driving a vehicle, with a 
highly significant effect indicated by a p-value < 0.0001. 
Cutting Speed (B) also plays a vital role, similar to 

adjusting gears to achieve optimal performance, as 
reflected by its p-value of 0.0043. In contrast, Depth of Cut 
(A), while contributing to the overall process much like the 
mass of the vehicle influences dynamics, exhibits a 
weaker individual effect in this study, with a p-value of 
0.0860. Additionally, interaction terms such as Depth of 
Cut × Feed Rate (AC) and Cutting Speed × Feed Rate 
(BC) demonstrate significant or near-significant 
contributions, suggesting that the combined influence of 
these parameters further shapes the shearing power 
observed. Interestingly, the squared terms like A² don't 
make much of a difference (p = 0.9813), indicating that 
the relationship between Depth of Cut and shearing 
power isn't more complex than initially assumed. Lastly, 
the lack of fit isn't significant (p = 0.9576), so the model 
fits well and captures the important factors that affect 
shearing power. 

 
 
                                Table 3: ANOVA for Quadratic model for Shearing power 
 

Source Sum of Squares df Mean Square F-value p-value  

Model 1.513E+06 9 1.681E+05 44.80 < 0.0001 significant 

A-Depth of cut 13605.22 1 13605.22 3.63 0.0860  

B-Cutting Speed 50555.09 1 50555.09 13.48 0.0043  

C-Feed Rate 2.895E+05 1 2.895E+05 77.17 < 0.0001  

AB 6.655E+05 1 6.655E+05 177.39 < 0.0001  

AC 36053.78 1 36053.78 9.61 0.0112  

BC 9675.44 1 9675.44 2.58 0.1394  

A² 2.16 1 2.16 0.0006 0.9813  

B² 44679.30 1 44679.30 11.91 0.0062  

C² 2.539E+05 1 2.539E+05 67.68 < 0.0001  

Residual 37513.25 10 3751.33    

Lack of Fit 5772.96 5 1154.59 0.1819 0.9576 not significant 

Pure Error 31740.30 5 6348.06    

Cor Total 1.550E+06 19     

 
       Equations 2 represent the quadratic models for 
various machining parameters, showing how factors like 

depth of cut (A), cutting speed (B), and feed rate (C) 
influence the shearing power. The equation includes  
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linear, interaction, and squared terms for the factors. For 
instance, in Equation 2, the response is influenced by 
linear terms (e.g., A, B, C), interaction terms (e.g., AB, 
AC, BC), and quadratic terms (e.g., A², B², C²), indicating 
that the relationship between the factors and the response 
is nonlinear. These models provide insight into how each 
factor and their interactions impact the outcomes, which 
is useful for optimizing the machining process. 
 
𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 =  456.446 +  2,547.15𝐴 +
 2.47241𝐵 − 10,249.6𝐶 − 10.2543𝐴𝐵 − 2,384.66𝐴𝐶 +
 6.17687𝐵𝐶 +  2.79296𝐴2  +  0.00989295𝐵2  +
 23,991.7𝐶2  ………………………………2 
 

        Table 4 provides fit statistics for the quadratic model 
predicting shearing power, showing high accuracy and 
reliability. The standard deviation of 61.25 around a mean 
shearing power of 722.40 suggests controlled variability 
in the model predictions. An R² of 0.9758 indicates that 
the model explains 97.58% of the variability in shearing 
power, with an adjusted R² of 0.9540 confirming model 
robustness after adjusting for predictor count. The 
predicted R² of 0.9405 highlights strong predictive 
performance on new data. An adequate precision of 
22.5145 indicates a high signal-to-noise ratio, validating 
the model's capability to provide dependable predictions, 
and the coefficient of variation (C.V.) of 8.48% 
demonstrates moderate consistency. 

 
 
                                                         Table 4: Fit Statistics for Shearing power 
 

Std. Dev. 61.25  R² 0.9758 

Mean 722.40  Adjusted R² 0.9540 

C.V. % 8.48  Predicted R² 0.9405 

   Adeq Precision 22.5145 

 
 
       Figure 1 illustrates the normal plot of residuals for 
shearing power. This plot is used to assess whether the 
residuals from the regression model for shearing power 
follow a normal distribution, which is an assumption for 
validating the model's adequacy. If the residuals closely 
follow the reference line in the plot, it indicates that the 

model fits the data well, and the assumption of normality 
holds. Any major deviations from the line would suggest 
non-normality, indicating potential issues such as outliers 
or model mis-specification. A well-aligned plot supports 
the use of the model for reliable shearing power 
predictions. 

 

 
 
                                                           Figure 1: Normal plot of residuals for Shearing Power 
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      Figure 2 presents the predicted versus actual plot for 
shearing power. This plot is a diagnostic tool used to 
evaluate the accuracy of the model's predictions by 
comparing the predicted values of shearing power against 
the actual observed values. Ideally, the data points are to 
indicate high model accuracy through lying in close 
proximity to the diagonal line. Any deviations from this line 

highlight discrepancies between predicted to actual 
values, so this suggests areas where the model may need 
improvement. Smaller deviations are indicative of better 
model performance. Larger deviations might point to 
factors the model missed or errors in data or model 
design. 

 

 
                                           
 
Figure 2: Predicted vs. Actual Plots for Shearing power 
 
 
3.1.1 Report summary 
 
      Table 5 summarizes the diagnostic statistics for 
"Shearing power," detailing the residuals, leverage, 
studentized residuals, Cook's Distance, and DFFITS for 
each run. Residuals are differences between actual and 
predicted values. Large residuals in certain observations 
indicate that the model does not fit those specific data 
points well, signaling potential issues with accuracy. 
Leverage measures how much an observation influences 
the predicted values. High-leverage points have the 

potential to substantially alter the model if their values 
were different, whereas low-leverage points exert minimal 
influence. When an observation exhibits both high 
residual and high leverage, it becomes a point of concern, 
as it may disproportionately distort the model’s fit. To 
quantify such influence, metrics like Cook’s Distance and 
DFFITS are employed; although they differ in formulation, 
both serve to identify observations that may have an 
undue impact on the model's overall behavior.  
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Table 5: Report summary of diagnostic statistics for Shearing power 
 

Run 
Order 

Actual 
Value 

Predicted 
Value 

Residual Leverage 
Internally 

Studentized 
Residuals 

Externally 
Studentized 
Residuals 

Cook's 
Distance 

Influence 
on Fitted 

Value 
DFFITS 

Standard 
Order 

1 532.70 597.62 -64.92 0.166 -1.161 -1.184 0.027 -0.528 14 

2 599.33 597.62 1.71 0.166 0.031 0.029 0.000 0.013 10 

3 532.70 597.62 -64.92 0.166 -1.161 -1.184 0.027 -0.528 5 

4 695.33 597.62 97.71 0.166 1.747 1.988 0.061 0.888 9 

5 1216.20 1207.72 8.48 0.692 0.250 0.238 0.014 0.356 18 

6 695.33 597.62 97.71 0.166 1.747 1.988 0.061 0.888 6 

7 532.70 597.62 -64.92 0.166 -1.161 -1.184 0.027 -0.528 15 

8 521.00 550.31 -29.31 0.660 -0.821 -0.807 0.131 -1.125 11 

9 908.60 945.97 -37.37 0.609 -0.976 -0.974 0.149 -1.216 12 

10 403.05 366.34 36.71 0.683 1.064 1.072 0.244 1.572 17 

11 589.00 564.03 24.97 0.609 0.652 0.632 0.066 0.790 20 

12 695.33 699.10 -3.77 0.586 -0.096 -0.091 0.001 -0.108 2 

13 724.80 723.97 0.8337 0.650 0.023 0.022 0.000 0.030 19 

14 695.33 716.43 -21.10 0.598 -0.543 -0.523 0.044 -0.637 3 

15 620.48 634.23 -13.75 0.683 -0.398 -0.381 0.034 -0.559 8 

16 1129.00 1130.83 -1.83 0.650 -0.050 -0.048 0.000 -0.065 16 

17 1216.20 1207.70 8.50 0.609 0.222 0.211 0.008 0.264 1 

18 332.00 321.99 10.01 0.692 0.295 0.281 0.020 0.421 13 

19 488.00 496.70 -8.70 0.621 -0.231 -0.219 0.009 -0.281 7 

20 1321.00 1297.06 23.94 0.660 0.671 0.651 0.087 0.908 4 

 
 
       Figure 3 Contour plots for shearing power display the 
interaction between the two independent variables and 
the corresponding shearing power. Contours plot the 
different shearing power values, indicating the interaction 
between the power for shearing and the change in 
independent variable. Closely spaced contours indicate a 
steep transition for shearing power, while widely spaced 
contours indicate a gentle transition. Identification of the 

optimal settings for shearing power maximization or 
optimization based on the independent variables is 
achievable by means of the plots. The plots optimize the 
energy usage and efficiency of the machining process. 
The optimum operating conditions for the attainment of 
the desired shearing power with minimal waste can be 
determined by means of interpretation of the contour plots 
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                 Figure 3: Contour plots for Shearing Power 
 
      Figure 4 Surface plots for Shearing Power show the 
relationship between shearing power required during 
machining and two independent process parameters, 
such as cutting speed, feed rate, or depth of cut. The 
surface plot shows the influence of these parameters on 
the shearing power, with the surface height representing 
the quantity of power required to cut. The color gradient 

typically highlights areas of higher or lower shearing 
power requirements. By displaying this information in 
three dimensions, the plot allows the optimal process 
parameters for power minimization or power optimization 
to be observed at a glance, making machining more 
energy-efficient and cost-effective. 

 

 
           
  Figure 4: Surface plots for Shearing Power  
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3.2 Artificial Neural Network (ANN) Model Development 
 
      Here, Artificial Neural Networks (ANNs) have been 
employed to simulate the complex, nonlinear interactions 
between machining parameters (depth of cut, cutting 
speed, and feed rate) and the shearing power developed. 
ANNs have been employed as they have a greater ability 
to simulate interactions that generally go unaddressed by 
typical regression models. The data were normalized prior 
to preprocessing and 80/20 training-testing splitting, and 
later trained through backpropagation to minimize mean 
squared error (MSE). Model performance was evaluated 
using MSE, correlation coefficient (R²), k-fold cross-
validation, and predicted vs. actual value plots. These 
metrics collectively demonstrated the ANN’s accuracy, 

generalizability, and robustness in predicting machining 
outcomes. 
       Figure 5 displays the network training diagram for 
predicting Shearing Power. In this figure, the training 
process involves using 8 epochs out of a maximum of 
1000, with validation checks being conducted at intervals, 
in this case, 6 times during the training process. The 
diagram typically shows how the model is being trained, 
with the error decreasing across the epochs, indicating 
improvement in the model’s ability to predict Shearing 
Power. The validation checks ensure that the model is not 
overfitting by evaluating its performance on a separate 
validation set during the training process. 

 
 

 
 
                                                  Figure 5: Network training diagram for predicting Shearing power 
 
      Figure 6 shows the performance curve of the trained 
neural network for predicting Shearing Power. The curve 
tracks the model's performance over epochs, showing 
how the error (or performance metric) evolves during 
training. The best validation performance of 8389.874 
was achieved at epoch 2, indicating that the model's 

predictions were most accurate at that point. After epoch 
2, the performance may have either plateaued or slightly 
worsened, suggesting the model had already reached its 
optimal performance on the validation set. The curve 
helps to visually assess how well the network learned and 
generalized from the data. 
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                       Figure 6: Performance curve of trained network for predicting Shearing power 
 
      Figure 7 shows the neural network training state for 
predicting Shearing Power at epoch 8. The gradient value 
of 516.8665 indicates the rate of change of the error with 
respect to the model's parameters, which suggests the 
magnitude of the adjustments being made to the weights 
during training. The value of Mu (1) represents the step 
size or learning rate used in the training process, affecting 
how much the weights are adjusted with each update. The 

validation checks (6) refer to the number of times the 
model's performance was evaluated on a separate 
validation set to ensure it was not overfitting to the training 
data. This training state snapshot provides insights into 
how the model was converging at this particular epoch, 
indicating the learning dynamics and progress during 
training. 
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                      Figure 7: Neural network training state for predicting Shearing power 
 
      Figure 8 displays the regression plots for predicting 
Shearing Power, showing the relationship between the 
predicted and actual values across different data sets: 
training, validation, testing, and all data combined. The 
training R-value of 0.95573 indicates a strong correlation 
between the predicted and actual values for the training 
data. The validation R-value of 0.93697 suggests a good 
fit for the model when evaluated on the validation set, 
although it is slightly lower than the training set, implying 

some potential overfitting. The test R-value of 0.99344 is 
very high, indicating excellent performance on the unseen 
test data. The overall R-value of 0.94605, combining all 
the data, suggests that the model generalizes well across 
all data sets, with a strong predictive capability for 
Shearing Power. These regression plots show how well 
the neural network model performs in predicting Shearing 
Power for different subsets of the data. 
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                 Figure 8: Regression, training, validation and testing plots for Shearing power 
 
      Table 6 presents the prediction of Shearing Power 
using an Artificial Neural Network (ANN). The table 
includes experimental data and predicted values for 
Shearing Power based on three factors: Depth of Cut 
(Factor 1), Cutting Speed (Factor 2), and Feed Rate 
(Factor 3). For each run, the experimental values of 
Shearing Power and the ANN-predicted values are 
compared and the corresponding prediction error 
computed. In most cases, the errors are extremely small, 
like for runs 1, 2, 5, and 13, where the predicted values 

are very close to the experimental values. In some cases, 
larger errors are observed, like for runs 7, 8, 9, and 19, 
where the predicted values are quite far from the 
experimental values. The range of the accuracy of the 
prediction shows that although the ANN model is mostly 
correct, there could be experimental conditions where the 
prediction error could be larger, which can indicate where 
the refinement or the fine-tuning could be done in the 
model. 
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                                  Table 6: Prediction of Shearing power using ANN 
 

Run 

Factor 1 Factor 2 Factor 3 Shearing power 

A:Depth 
of cut 

B:Cutting 
Speed 

C:Feed 
Rate Experiment ANN Error 

mm m/min mm/rev 

1 0.63 225 0.17 532.7 531.19 1.51 

2 0.63 225 0.17 599.33 601.19 -1.86 

3 0.63 225 0.17 532.7 531.19 1.51 

4 0.63 225 0.17 695.33 654.19 41.14 

5 0.25 300 0.25 1216.2 1214.02 2.18 

6 0.63 225 0.17 695.33 691.19 4.14 

7 0.63 225 0.17 532.7 601.19 -68.49 

8 0.25 150 0.1 521 574.46 -53.46 

9 0.63 351.13 0.17 908.6 818.12 90.48 

10 1 300 0.25 403.05 354.36 48.69 

11 0.63 98.87 0.17 589 576.31 12.69 

12 0.01 225 0.17 695.33 694.43 0.9 

13 1 300 0.1 724.8 724.78 0.02 

14 0.63 225 0.3 695.33 693.32 2.01 

15 1 150 0.25 620.48 598.78 21.7 

16 1 150 0.1 1129 1130.71 -1.71 

17 0.63 225 0.05 1216.2 1216.91 -0.71 

18 0.25 150 0.25 332 388 -56 

19 1.26 225 0.17 488 573.5 -85.5 

20 0.25 300 0.1 1321 1256.12 64.88 

 
 
3.3 Comparative Analysis of RSM and ANN Models 
 
      Table 7 provides RSM and ANN model predictions of 
shearing power and experimental measurements. The 
table provides the input factors (Depth of cut, Cutting 
Speed, and Feed Rate) for each run, experimental values 
of shearing power, and RSM and ANN predictions. 
Experimental values of shearing power differ based on 
the input factors' combinations. The RSM and ANN 

models also predict values close to the experiment but 
with variations. The ANN model predicts more closely, as 
can be seen from its values compared to the RSM model, 
where variations with experiment are higher. This signifies 
that the ANN model better learns the highly nonlinear 
relationships between the machining parameters and 
shearing power compared to the RSM model. 
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                               Table 7: RSM vs ANN Prediction for Shearing power 
 

Run 
A:Depth 
of cut 

B:Cutting 
Speed 

C:Feed 
Rate Experiment RSM ANN 

  Mm m/min mm/rev 

1 0.63 225 0.17 532.7 597.62 531.19 

2 0.63 225 0.17 599.33 597.62 601.19 

3 0.63 225 0.17 532.7 597.62 531.19 

4 0.63 225 0.17 695.33 597.62 654.19 

5 0.25 300 0.25 1216.2 1207.72 1214.02 

6 0.63 225 0.17 695.33 597.62 691.19 

7 0.63 225 0.17 532.7 597.62 601.19 

8 0.25 150 0.1 521 550.31 574.46 

9 0.63 351.13 0.17 908.6 945.97 818.12 

10 1 300 0.25 403.05 366.34 354.36 

11 0.63 98.87 0.17 589 564.03 576.31 

12 0.01 225 0.17 695.33 699.1 694.43 

13 1 300 0.1 724.8 723.97 724.78 

14 0.63 225 0.3 695.33 716.43 693.32 

15 1 150 0.25 620.48 634.23 598.78 

16 1 150 0.1 1129 1130.83 1130.71 

17 0.63 225 0.05 1216.2 1207.7 1216.91 

18 0.25 150 0.25 332 321.99 388 

19 1.26 225 0.17 488 496.7 573.5 

20 0.25 300 0.1 1321 1297.06 1256.12 

 
       Figure 9 plots the experimental results and 
predictions of the RSM and ANN models for the 20 
experimental runs. The figure shows the experimental 
values of the shearing power and the corresponding RSM 
and ANN model predictions. While the two models 
capture the general trend in the experimental data, the 

ANN model closely mimics the fluctuations in the actual 
shearing power, proving its better ability in capturing the 
nonlinearities and complexities of the process. The RSM 
is, however, observed to make a more linear prediction 
that does not capture all the fluctuations in the 
experimental data, proving the better fit of the ANN model. 
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                          Figure 9: Time Series Plot of Experiment, RSM, ANN for Shearing power 
 
      The regression equation 3 indicates that there is a 
perfect linear relationship between the experimental 
shearing power values and those predicted by the RSM 
model. The coefficient of 1.000 suggests that for every 
unit change in the RSM prediction, the experimental value 
changes by an equal amount. The term "- 0.00" implies 
that there is no significant offset between the 
experimental and predicted values, indicating that the 
RSM model accurately predicts the shearing power with 
minimal error. This perfect linearity further suggests a 
high degree of correlation and an effective RSM model in 
this case. 
Experiment = - 0.00 + 1.000 RSM ……………….3 
       Table 8 presents the RSM Model Summary for 
Shearing power, where the standard deviation (S) is 
45.6519, and the R-squared (R-sq) value is 97.58%, with 

an adjusted R-squared (R-sq(adj)) of 97.45%. This 
indicates that the RSM model explains approximately 
97.58% of the variability in shearing power, with only a 
small reduction in explanatory power when adjusted for 
the number of predictors. Furthermore, Table 9 shows the 
RSM Analysis of Variance (ANOVA) for Shearing power, 
with a regression sum of squares (SS) of 1,512,606 and 
a mean square (MS) of 1,512,606. The corresponding F-
value of 725.79 and a p-value of 0.000 indicate that the 
regression model is statistically significant, meaning that 
the model effectively captures the relationship between 
the input variables and the shearing power. The error sum 
of squares (SS) of 37,514 and the associated mean 
square (MS) of 2,084 suggest that the residuals (or error) 
are relatively small compared to the regression sum, 
reinforcing the model's predictive accuracy. 

 
                                                                  Table 8: RSM Model Summary for Shearing power 
 

S R-sq R-sq(adj) 

45.6519 97.58% 97.45% 

 
                                                   Table 9: RSM Analysis of Variance for Shearing power 
 

Source DF SS MS F P 

Regression 1 1512606 1512606 725.79 0.000 

Error 18 37514 2084     

Total 19 1550119       
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      Shearing power regression equation, as provided in 
Equation 4, shows the agreement of experimental 
shearing power values with the ANN model predictions. 
The equation suggests that one would obtain a rise in the 
experimental shearing power by approximately 1.047 
units with an intercept of -32.74 when there is a one unit 
rise in the ANN-predicted value. The regression suggests 
that the ANN model is extremely close to the experimental 
data with a slightly higher sensitivity (1.047) than the 
perfect 1:1 relationship. The negative intercept suggests 
that, when the predicted shearing power is zero, the 
experimental value would deviate by -32.74 units, 
highlighting the model’s accuracy and the close match 
between the predicted and experimental results. 
Experiment = - 32.74 + 1.047 ANN   
   4 
      In Table 10, the ANN Model Summary for Shearing  

power shows that the ANN model has a high coefficient 
of determination (R-squared) of 97.93%, and the adjusted 
R-squared value is 97.82%. These values indicate that 
the ANN model explains nearly 98% of the variance in the 
experimental shearing power data, suggesting that it is a 
highly effective model for predicting the shearing power. 
While in Table 11, the ANN Analysis of Variance 
(ANOVA) for Shearing power reveals that the regression 
model is statistically significant, with a very high F-value 
of 853.20 and a p-value of 0.000. This indicates that the 
ANN model provides a significantly better fit to the data 
compared to the error (residuals). The regression 
explains the majority of the variance in the data, as 
indicated by the very low error sum of squares (SS = 
32,027) relative to the regression sum of squares (SS = 
1,518,092). These results underscore the effectiveness of 
the ANN model in accurately predicting shearing power. 

 
                                                        Table 10: ANN Model Summary for Shearing power 
 

S R-sq R-sq(adj) 

42.1816 97.93% 97.82% 

 
                                                  Table 11: ANN Analysis of Variance for Shearing power 
 

Source DF SS MS F P 

Regression 1 1518092 1518092 853.20 0.000 

Error 18 32027 1779     

Total 19 1550119       

 
 
4. CONCLUSION 
 
      This study presents a comprehensive assessment of 
the effectiveness of Response Surface Methodology 
(RSM) and Artificial Neural Networks (ANN) in optimizing 
machining processes, specifically for predicting shearing 
power. Both approaches demonstrated the ability to 
forecast machining outcomes based on key parameters 
(depth of cut, cutting speed, and feed rate). However, 
clear differences emerged between the two, particularly 
when dealing with complex or non-linear patterns in the 
data. The RSM model, with its relatively simple and 
interpretable structure, delivered reliable predictions 
under conditions where the relationships among variables 
were predominantly linear. In such cases, it offered 
reasonable approximations of machining responses. The 
RSM model showed strong results in the prediction of 
shearing power, due mainly to the input parameters 
connected with the output in a fairly simple way. Since 
RSM relies upon linear assumptions, its benefit also 
suggests a problem it often faces with more detailed 
connections among input variables. 
RSM and ANN both offer methods valuable for 
optimization and prediction in machining processes. 
However, the results from this study clearly indicate the 
ANN model's accuracy. Adaptability is superior also in the 

ANN model in comparison to RSM. Due to the fact that it 
is able to capture complex and nonlinear relationships 
between machining parameters, it generates predictions. 
The predictions are more precise over a broad range of 
conditions. ANN suits applications well because they 
need optimization that is accurate and flexible. The ANN 
model identifies optimal process settings to machine more 
efficiently, and it operates at lower costs while relying less 
on trial-and-error methods. ANN thus offers a stronger as 
well as dependable predictive tool to aid future research 
including practical implementation for machining 
optimization.  
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