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Abstract

Machining parameter optimization is a major issue in modern manufacturing, owing to its direct impact on efficiency,
stability, and product quality. Predictive modeling and optimization of shearing power in turning operations under
constraints was the aim of this study, where a comparative evaluation of the usefulness of Response Surface
Methodology (RSM) and Artificial Neural Networks (ANN) methods is provided. Three major factors affecting shearing
power and machining behaviour are the concern of this study: depth of cut, cutting speed, and feed rate. Using well-
planned and executed experiments, the data necessary to construct predictive models was gathered. Using Response
Surface Methodology (RSM), equations that describe the intricate interaction of these variables were obtained. Artificial
Neural Networks (ANN) was a very effective means of modeling the intricate patterns in the data, giving a more detailed
image of the machining process. When the two techniques were compared against each other, Artificial Neural Networks
(ANN) emerged as the better predictive model, delivering spot-on predictions of shearing power with impressively low
error margins and robust regression performance. While both models showed statistical effectiveness, ANN's capability
for capturing the intricate relationships between machining variables was unparalleled. This implies that ANN could
revolutionize process optimization, unlocking new levels of machining efficiency. By tapping into the potential of data-
driven decision-making, this work fosters smart manufacturing, enabling machine processes that are more agile,
responsive, and self-tuning than ever before.
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1. INTRODUCTION

In today’s manufacturing landscape, the demand for
greater precision, efficiency, and adaptability has led to
increased attention on machining processes operating
under constrained conditions (Imad, 2022). Among these,
turning remains a key operation for producing high-
accuracy components used in critical industries such as
aerospace, automotive, and biomedical engineering
(Singh & Singh, 2023). However, turning is highly
sensitive to adjustments in process variables like depth of
cut, cutting speed, and feed rate (Bazaz et al.,, 2023;
Ragai et al., 2022). These factors have a direct influence
on important outcomes such as thrust force, shearing
power, tool wear, and surface finish (Kuang et al., 2022).
The challenging nature of constrained machining which is
often shaped by limitations in allowable cutting forces,
heat dissipation, material properties, and dynamic
interactions between the tool and workpiece, has driven
the development of more advanced predictive and
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optimization tools (Mativenga et al., 2024). Traditional
modeling approaches, such as empirical regression and
analytical methods, while widely applied, often lack the
flexibility to handle nonlinear behavior or the complex
interplay among multiple variables (Khan et al., 2020;
Bhowmik et al., 2019).

Response Surface Methodology (RSM) has proven
to be a very effective statistical method in machining
optimization, offering deep insights into the interaction of
input variables and their impact on system behavior.
Founded on second-order polynomial models, RSM is
effective at capturing main effects, along with very subtle
interactions. In addressing systems of relatively linear or
slightly nonlinear trends it has been able to show its
strength, and it has become the first choice in an
overwhelming majority of machining applications (Asiltlrk
et al., 2021). Response Surface Methodology (RSM) has
been successfully used to optimize machining responses
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like surface roughness, material removal rate, and cutting
force. Artificial Neural Networks (ANN), by contrast, take
a more generalized method, learning from examples
without being limited by known equations. This makes
ANN extremely powerful at revealing intricate, nonlinear
relationships in large data sets, a hugely desirable
attribute for modeling a wide variety of machining
conditions. Applications of ANN have been amply
documented in a wide variety of machining contexts, from
foreseeing bead geometry in TIG welding (Kesse et al.,
2020), predicting weld penetration (Chandrasekhar et al.,
2025), and equating tensile strain in welded joints
(Igbinake, 2025). Perhaps the greatest advantage of ANN
is the way it deals with nonlinear, real-world process
conditions where variables are all interrelated. And
experiments prove that it surpasses RSM in precise
prediction and generalization to new data. For instance,
Kshirsagar et al. (2020) reported that the integration of
ANN and evolutionary algorithms led to phenomenal
performance improvement in the optimization of TIG
welding parameters, particularly in predicting bead
features and mechanical properties. Similarly, Costa et al.
(2023) found that ANN models were extremely effective
in revealing complex interactions in machining data and
surpassed RSM in the experiment.

Despite significant advancements, there is one
critical knowledge gap in the field of constrained turning
operations; shearing power prediction and maximization.
Previous research was largely focused on individual
response outcomes, thrust force or surface finish, and
failed to consider the complex interaction between
different responses against constrained situations. The
current work bridges this gap directly by developing a
predictive model based on the complementary strengths
of RSM and ANN. By combining RSM's strength for
uncovering early trends and ANN's strength for non-linear
dynamics, an enhanced and robust model can be
developed. Together, they provide an integrated
complementary approach to constrained turning
conditions. The double-model approach is in line with
changing trends towards smart manufacturing and
Industry 4.0, where intelligent, knowledge-based
technologies are increasingly crucial for process
optimization, design for minimal waste, and maximization
of resources in real-time manufacturing systems.

2. METHODOLOGY
2.1 Research Design

The research design of this study is developed to
deal systematically with the prediction and optimization
challenge of machining parameters in constrained
situations in turning operations. The study design is
guantitative in nature, and experimental data collection
and high-level predictive modeling are being undertaken.
The general aim is to examine the influence of machining
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parameters (cutting depth, cutting velocity, and feed rate)
on the main machining response (shearing power) that in
turn will lead to the establishment of predictive models
through Response Surface Methodology (RSM) and
Artificial Neural Networks (ANN).

2.2 Data Collection

The data is collected for each experimental run, and
machining parameters are varied systematically based on
experimental design. The data are used to construct the
basis of the modeling effort, including precise
measurements of shearing force. For accuracy and
reliability, instruments are of high quality and each trial is
replicated to include any variability. The experiment was
designed carefully to create consistency and accuracy.
Order trials was repeated and randomized systematically
to minimize environmental influences and measurement
error. Randomizing order and repeating every
combination of level of factors multiple times permits the
verification that the results are unbiased and reliable. By
such means, precise and reproducible data collection is
obtained under well established and controlled machining
conditions, constituting the appropriate basis for
predictive modeling and optimization phases of this work.

2.3 Design of Experiments (DOE)

In this work, the intricacies of machine work were
studied. A structured approach known as Design of
Experiments (DOE) was employed to investigate the
relationship between critical machining parameters
(depth of cut, cutting speed, and feed rate) and the power
consumed during cutting operations. This methodology
enabled a systematic examination of how these variables
interact, allowing the identification of significant effects
that might otherwise remain undetected. By utilizing the
well-defined framework provided by DOE, it became
possible to analyze seemingly disordered data and isolate
the fundamental forces that influence machining
performance outcomes.

2.4 Response Surface Methodology (RSM)

The study commenced with the application of
Response Surface Methodology (RSM), which facilitated
the development of mathematical models to evaluate the
individual effects of key process variables. RSM also
made it possible to observe how these variables interact
and influence one another. Its strength lies in its ability to
uncover complex interdependencies that may not be
immediately apparent. By examining how operational
changes affect outcomes, RSM serves as a powerful tool
for identifying trends, critical points, and providing
actionable insights. It is particularly effective for
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interpreting underlying patterns within noisy or complex
datasets. In this investigation, RSM functioned as the
primary modeling framework. Predictive equations were
constructed to accurately represent the contribution of
each factor and their interactions. Based on the
experimental data, a mathematical model was formulated
to estimate shearing power as a function of three
machining parameters: depth of cut (A), cutting speed (B),
and feed rate (C). The model, expressed in Equation 1,
includes linear, quadratic, and interaction terms. To
assess the statistical relevance of each term, Analysis of
Variance (ANOVA) was performed, allowing the model to
remain both concise and statistically valid. Diagnostic
evaluations, including residual analysis and goodness-of-
fit tests, were conducted to ensure model accuracy and
reliability. With the validated model in place, RSM was
then employed to optimize the machining conditions,
ultimately identifying the parameter settings that yield the
most efficient performance.

Y = By + B1A+ BB + B3C + P11 A% + Boy B + B33C% +

B12AB + Pi3AC + BozBC+€ e 1
where:

o Bo is the intercept,

o B1, B2, Bz represent the main effects,

o Bi1, B22, B3z represent the squared terms,
and

o Bi2, B13, B23 represent interaction effects.

2.5 Artificial Neural Networks (ANN)

Artificial Neural Network (ANN) models were
developed to complement the Response Surface
Methodology (RSM) by capturing complex, nonlinear
relationships that RSM might not fully detect. These
models learned from experimental data and were
structured using a typical feedforward architecture
consisting of an input layer, one or more hidden layers,
and an output layer. The input layer received machining
parameters—depth of cut, cutting speed, and feed rate—
while the hidden layers processed nonlinear interactions,
and the output layer predicted shearing power. To train
the network and mitigate overfitting, the dataset was
divided into training and validation subsets. During
training, backpropagation was employed to iteratively
adjust weights and biases, minimizing the mean squared
error (MSE) between predicted and actual values. Key
hyperparameters, such as the number of hidden layers,
neurons per layer, learning rate, and activation functions,

were fine-tuned using grid search and cross-validation
techniques to improve the model's generalization
capability. Once trained, the ANN’s performance was
evaluated using Root Mean Square Error (RMSE) and the
coefficient of determination (R2) on the test data. The
results demonstrated that the ANN effectively mapped
input conditions to machining responses with high
accuracy, confirming its advantage over traditional linear
or polynomial-based modeling approaches.

2.6 Model Comparison and Validation

Both RSM and ANN was put to series of experiments
to ensure their efficiency. R2? values were calculated to
assess the predictive validity of the models and to
compare the performance of the two modeling approach,
highlighting their respective strengths and limitations. To
further validate the models, cross-validation techniques
were applied, ensuring consistency and reliability across
the datasets. These validation steps confirmed the
robustness of the findings under varying data conditions.
This study effectively integrates the strengths of both
empirical experimentation and advanced modeling to
address complex challenges in metal cutting operations.
By combining the statistical rigor of Response Surface
Methodology (RSM) with the adaptive learning
capabilities of Artificial Neural Networks (ANN), a
comprehensive modeling framework was established that
leverages both numerical precision and pattern
recognition. This hybrid approach not only fulfills the
objectives of the study but also provides practical insights
that can be applied to a wide range of machining
scenarios.

3. RESULTS
3.1 Experimental Results

The experimental findings so obtained for this
investigation offer an overall picture of interrelationships
among the principal machining variables, i.e., depth of
cut, cutting speed, and feed rate, and their influence on
the response variable, i.e., shearing power. This kind of
information is essential for building predictive models,
optimizing machining conditions, and realizing the subtle
interactions involved during the turning process. The
results, summarized in Table 1, form the foundation for
subsequent model building and analysis in this study
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Table 1: Experimental Data of Shearing Power Based on Varying Parameters

dSt ::1 Faitor Factor 2 Fagtor Resgons
At:hDgfp B:Cuttin C:Feed Shearing
cut g Speed Rate power
mm m/min mm/rev W
14 1 0.63 225 0.17 532.7
10 2 0.63 225 0.17 599.33
5 3 0.63 225 0.17 532.7
9 4 0.63 225 0.17 695.33
18 5 0.25 300 0.25 1216.2
6 6 0.63 225 0.17 695.33
5 7 0.63 225 0.17 532.7
11 8 0.25 150 0.1 521
12 9 0.63 351.13 0.17 908.6
17 10 1 300 0.25 403.05
20 11 0.63 98.87 0.17 589
2 12 0.01 225 0.17 695.33
19 13 1 300 0.1 724.8
3 14 0.63 225 0.3 695.33
8 15 1 150 0.25 620.48
16 16 1 150 0.1 1129
1 17 0.63 225 0.05 1216.2
13 18 0.25 150 0.25 332
7 19 1.26 225 0.17 488
4 20 0.25 300 0.1 1321

Table 1 illustrates the variations in machining
responses obtained by systematically adjusting the
machining parameters. These data serve as the baseline
for predictive modeling and optimization processes.

Table 2 presents the Sequential Model Sum of
Squares for Shearing Power, revealing how each set of
model terms contributes to explaining variation in the
response. The Mean vs. Total term has the largest sum
of squares (1.044E+0Q7), establishing the baseline
variation in shearing power. Adding linear terms for
individual factors (such as depth of cut, cutting speed, and
feed rate) explains additional variation, with a sum of
squares of 5.171E+05, an F-value of 2.67, and a p-value
of 0.0827, suggesting limited significance for linear terms
alone. The addition of two-factor interaction (2FI) terms

significantly improves the model, with a sum of squares of
7.112E+05, an F-value of 9.58, and a p-value of 0.0013,
indicating meaningful interaction effects among the
machining parameters. Quadratic terms further enhance
the model’s fit, with a sum of squares of 2.843E+05, a
high F-value of 25.26, and a very significant p-value of <
0.0001, justifying the inclusion of quadratic effects. In
contrast, cubic terms add minimal explanatory power, with
a sum of squares of only 5772.96, an F-value of 0.1819,
and a p-value of 0.9576, indicating that further terms
would not meaningfully improve the model. The residual
variance remains relatively small (31740.30), supporting
the adequacy of the quadratic model for capturing
significant effects on shearing power.
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Table 2: Sequential Model Sum of Squares for Shearing Power

Source

Sum of Squares df Mean Square F-value p-value

Mean vs Total 1.044E+07 1 1.044E+07

Linear vs Mean 5.171E+05 3  1.724E+05 2.67 0.0827

2FI vs Linear 7.112E+05 3 2.371E+05 9.58 0.0013

Quadratic vs 2FI 2.843E+05 3 94774.48 25.26 < 0.0001 Suggested
Cubic vs Quadratic 5772.96 5 1154.59 0.1819 0.9576  Aliased
Residual 31740.30 5 6348.06

Total 1.199E+07 20 5.994E+05

By employing sequential SS, the analysis provides a
clearer understanding of the individual and combined
contributions of each factor and interaction. This method
also highlights which terms contribute significantly to the
model and informs further model refinement for optimal
predictive accuracy.

Table 3 presents the ANOVA for the quadratic model
used to predict shearing power. The model itself is highly
significant (F = 44.80, p < 0.0001), which means it does a
good job of explaining the variations in shearing power.
The machining parameters can be thought of as
interacting components in a mechanical system were
each contributes differently to the final outcome. Among
these, Feed Rate (C) emerges as the most influential
factor, comparable to the engine driving a vehicle, with a
highly significant effect indicated by a p-value < 0.0001.
Cutting Speed (B) also plays a vital role, similar to

adjusting gears to achieve optimal performance, as
reflected by its p-value of 0.0043. In contrast, Depth of Cut
(A), while contributing to the overall process much like the
mass of the vehicle influences dynamics, exhibits a
weaker individual effect in this study, with a p-value of
0.0860. Additionally, interaction terms such as Depth of
Cut x Feed Rate (AC) and Cutting Speed x Feed Rate
(BC) demonstrate significant or near-significant
contributions, suggesting that the combined influence of
these parameters further shapes the shearing power
observed. Interestingly, the squared terms like A2 don't
make much of a difference (p = 0.9813), indicating that
the relationship between Depth of Cut and shearing
power isn't more complex than initially assumed. Lastly,
the lack of fit isn't significant (p = 0.9576), so the model
fits well and captures the important factors that affect
shearing power.

Table 3: ANOVA for Quadratic model for Shearing power

Source Sum of Squares df Mean Square F-value p-value

Model 1.513E+06 9 1.681E+05 44.80 <0.0001 significant
A-Depth of cut 13605.22 1 13605.22 3.63 0.0860

B-Cutting Speed 50555.09 1 50555.09 13.48 0.0043

C-Feed Rate 2.895E+05 1 2.895E+05 77.17 <0.0001

AB 6.655E+05 1 6.655E+05 177.39 <0.0001

AC 36053.78 1 36053.78 9.61 0.0112

BC 9675.44 1 9675.44 258 0.1394

A2 2.16 1 2.16 0.0006 0.9813

B2 44679.30 1 44679.30 11.91 0.0062

Cz 2.539E+05 1 2.539E+05 67.68 <0.0001

Residual 37513.25 10 3751.33

Lack of Fit 5772.96 5 115459 0.1819 0.9576 not significant
Pure Error 31740.30 5 6348.06

Cor Total 1.550E+06 19

Equations 2 represent the quadratic models for
various machining parameters, showing how factors like

depth of cut (A), cutting speed (B), and feed rate (C)
influence the shearing power. The equation includes



linear, interaction, and squared terms for the factors. For
instance, in Equation 2, the response is influenced by
linear terms (e.g., A, B, C), interaction terms (e.g., AB,
AC, BC), and quadratic terms (e.g., A2, B2, C?), indicating
that the relationship between the factors and the response
is nonlinear. These models provide insight into how each
factor and their interactions impact the outcomes, which
is useful for optimizing the machining process.

Shearing power = 456.446 + 2,547.154 +
2.47241B — 10,249.6C — 10.2543AB — 2,384.66AC +
6.17687BC + 2.79296A4% + 0.00989295B% +
23,991.7C?
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Table 4 provides fit statistics for the quadratic model
predicting shearing power, showing high accuracy and
reliability. The standard deviation of 61.25 around a mean
shearing power of 722.40 suggests controlled variability
in the model predictions. An R2 of 0.9758 indicates that
the model explains 97.58% of the variability in shearing
power, with an adjusted R2? of 0.9540 confirming model
robustness after adjusting for predictor count. The
predicted R2 of 0.9405 highlights strong predictive
performance on new data. An adequate precision of
22.5145 indicates a high signal-to-noise ratio, validating
the model's capability to provide dependable predictions,
and the coefficient of variation (C.V.) of 8.48%
demonstrates moderate consistency.

Table 4: Fit Statistics for Shearing power

Std. Dev. 61.25

R2 0.9758

Mean 722.40
CV.% 8.48

Adjusted R?
Predicted R2

0.9540
0.9405

Adeq Precision 22.5145

Figure 1 illustrates the normal plot of residuals for
shearing power. This plot is used to assess whether the
residuals from the regression model for shearing power
follow a normal distribution, which is an assumption for
validating the model's adequacy. If the residuals closely
follow the reference line in the plot, it indicates that the

model fits the data well, and the assumption of normality
holds. Any major deviations from the line would suggest
non-normality, indicating potential issues such as outliers
or model mis-specification. A well-aligned plot supports
the use of the model for reliable shearing power
predictions.

Normal Plot of Residuals
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Figure 1: Normal plot of residuals for Shearing Power
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Figure 2 presents the predicted versus actual plot for
shearing power. This plot is a diagnostic tool used to
evaluate the accuracy of the model's predictions by
comparing the predicted values of shearing power against
the actual observed values. Ideally, the data points are to
indicate high model accuracy through lying in close
proximity to the diagonal line. Any deviations from this line

Shearing power

highlight discrepancies between predicted to actual
values, so this suggests areas where the model may need
improvement. Smaller deviations are indicative of better
model performance. Larger deviations might point to
factors the model missed or errors in data or model
design.

Predicted vs. Actual

) 1400
Color points by vaue of

Sheanng power

132 “

1000 —

Predicted

200

200

Figure 2: Predicted vs. Actual Plots for Shearing power

3.1.1 Report summary

Table 5 summarizes the diagnostic statistics for
"Shearing power," detailing the residuals, leverage,
studentized residuals, Cook's Distance, and DFFITS for
each run. Residuals are differences between actual and
predicted values. Large residuals in certain observations
indicate that the model does not fit those specific data
points well, signaling potential issues with accuracy.
Leverage measures how much an observation influences
the predicted values. High-leverage points have the

600 800 1000 1200 1400

Actual

potential to substantially alter the model if their values
were different, whereas low-leverage points exert minimal
influence. When an observation exhibits both high
residual and high leverage, it becomes a point of concern,
as it may disproportionately distort the model’s fit. To
quantify such influence, metrics like Cook’s Distance and
DFFITS are employed; although they differ in formulation,
both serve to identify observations that may have an
undue impact on the model's overall behavior.
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Table 5: Report summary of diagnostic statistics for Shearing power

. Internally Externally . Influ(_:;nce
Run Actual Predicted . . . Cook's on Fitted Standard
Order Value Value Residual Leverage Studgnt|zed Studgntlzed Distance Value Order
Residuals Residuals
DFFITS

1 532.70 597.62 -64.92 0.166 -1.161 -1.184 0.027 -0.528 14
2 599.33 597.62 1.71 0.166 0.031 0.029 0.000 0.013 10
3 532.70 597.62 -64.92 0.166 -1.161 -1.184 0.027 -0.528 5
4 695.33 597.62 97.71 0.166 1.747 1.988 0.061 0.888 9
5 1216.20 1207.72 8.48 0.692 0.250 0.238 0.014 0.356 18
6 695.33 597.62 97.71 0.166 1.747 1.988 0.061 0.888 6
7 532.70 597.62 -64.92 0.166 -1.161 -1.184 0.027 -0.528 15
8 521.00 550.31 -29.31 0.660 -0.821 -0.807 0.131 -1.125 11
9 908.60 945.97 -37.37 0.609 -0.976 -0.974 0.149 -1.216 12
10 403.05 366.34 36.71 0.683 1.064 1.072 0.244 1.572 17
11 589.00 564.03 24.97 0.609 0.652 0.632 0.066 0.790 20
12 695.33  699.10 -3.77 0.586 -0.096 -0.091 0.001 -0.108 2
13 72480 723.97 0.8337 0.650 0.023 0.022 0.000 0.030 19
14 695.33 716.43 -21.10 0.598 -0.543 -0.523 0.044 -0.637 3
15 620.48 634.23 -13.75 0.683 -0.398 -0.381 0.034 -0.559 8
16 1129.00 1130.83 -1.83 0.650 -0.050 -0.048 0.000 -0.065 16
17 1216.20 1207.70 8.50 0.609 0.222 0.211 0.008 0.264 1
18 332.00 321.99 10.01 0.692 0.295 0.281 0.020 0.421 13
19 488.00 496.70 -8.70 0.621 -0.231 -0.219 0.009 -0.281 7
20 1321.00 1297.06 23.94 0.660 0.671 0.651 0.087 0.908 4

Figure 3 Contour plots for shearing power display the
interaction between the two independent variables and
the corresponding shearing power. Contours plot the
different shearing power values, indicating the interaction
between the power for shearing and the change in
independent variable. Closely spaced contours indicate a
steep transition for shearing power, while widely spaced
contours indicate a gentle transition. Identification of the

optimal settings for shearing power maximization or
optimization based on the independent variables is
achievable by means of the plots. The plots optimize the
energy usage and efficiency of the machining process.
The optimum operating conditions for the attainment of
the desired shearing power with minimal waste can be
determined by means of interpretation of the contour plots
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Figure 3: Contour plots for Shearing Power

Figure 4 Surface plots for Shearing Power show the
relationship between shearing power required during
machining and two independent process parameters,
such as cutting speed, feed rate, or depth of cut. The
surface plot shows the influence of these parameters on
the shearing power, with the surface height representing
the quantity of power required to cut. The color gradient

Factor Coding: Actuasl

Shearing power
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X1 =A
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Actual Factor
C«0175
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Shesting power

00

I Cutting Speed (m/min)

Figure 4: Surface plots for Shearing Power

02e

1

Shearing power
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A: Depth of cut (mm)

typically highlights areas of higher or lower shearing
power requirements. By displaying this information in
three dimensions, the plot allows the optimal process
parameters for power minimization or power optimization
to be observed at a glance, making machining more
energy-efficient and cost-effective.

3D Surface

A Depth of cut (mm)



3.2 Artificial Neural Network (ANN) Model Development

Here, Artificial Neural Networks (ANNs) have been
employed to simulate the complex, nonlinear interactions
between machining parameters (depth of cut, cutting
speed, and feed rate) and the shearing power developed.
ANNSs have been employed as they have a greater ability
to simulate interactions that generally go unaddressed by
typical regression models. The data were normalized prior
to preprocessing and 80/20 training-testing splitting, and
later trained through backpropagation to minimize mean
squared error (MSE). Model performance was evaluated
using MSE, correlation coefficient (R?), k-fold cross-
validation, and predicted vs. actual value plots. These
metrics collectively demonstrated the ANN’s accuracy,

4

Neural Network

b e
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generalizability, and robustness in predicting machining
outcomes.

Figure 5 displays the network training diagram for
predicting Shearing Power. In this figure, the training
process involves using 8 epochs out of a maximum of
1000, with validation checks being conducted at intervals,
in this case, 6 times during the training process. The
diagram typically shows how the model is being trained,
with the error decreasing across the epochs, indicating
improvement in the model’s ability to predict Shearing
Power. The validation checks ensure that the model is not
overfitting by evaluating its performance on a separate
validation set during the training process.
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Figure 5: Network training diagram for predicting Shearing power

Figure 6 shows the performance curve of the trained
neural network for predicting Shearing Power. The curve
tracks the model's performance over epochs, showing
how the error (or performance metric) evolves during
training. The best validation performance of 8389.874
was achieved at epoch 2, indicating that the model's

predictions were most accurate at that point. After epoch
2, the performance may have either plateaued or slightly
worsened, suggesting the model had already reached its
optimal performance on the validation set. The curve
helps to visually assess how well the network learned and
generalized from the data.
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Best Validation Performance is 8389.874 at epoch 2
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Figure 6: Performance curve of trained network for predicting Shearing power

Figure 7 shows the neural network training state for
predicting Shearing Power at epoch 8. The gradient value
of 516.8665 indicates the rate of change of the error with
respect to the model's parameters, which suggests the
magnitude of the adjustments being made to the weights
during training. The value of Mu (1) represents the step
size or learning rate used in the training process, affecting
how much the weights are adjusted with each update. The

validation checks (6) refer to the number of times the
model's performance was evaluated on a separate
validation set to ensure it was not overfitting to the training
data. This training state snapshot provides insights into
how the model was converging at this particular epoch,
indicating the learning dynamics and progress during
training.
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Figure 7: Neural network training state for predicting Shearing power

Figure 8 displays the regression plots for predicting
Shearing Power, showing the relationship between the
predicted and actual values across different data sets:
training, validation, testing, and all data combined. The
training R-value of 0.95573 indicates a strong correlation
between the predicted and actual values for the training
data. The validation R-value of 0.93697 suggests a good
fit for the model when evaluated on the validation set,
although it is slightly lower than the training set, implying

some potential overfitting. The test R-value of 0.99344 is
very high, indicating excellent performance on the unseen
test data. The overall R-value of 0.94605, combining all
the data, suggests that the model generalizes well across
all data sets, with a strong predictive capability for
Shearing Power. These regression plots show how well
the neural network model performs in predicting Shearing
Power for different subsets of the data.



134. Glob. J. Environ. Sci. Technol

Training: R=0.95573

1200

Y=T

800

600

400¢#

Output ~= 0.83"Target + 1.2e+02

400 600 800 1000 1200
Target

Test: R=0.99344

1200 O Data

Fit
1100 y=T

0.93*Target + -11
=
o

~
o
b=}

Output ~
o
8

400 600 800 1000 1200
Target

e A

O Data =i
L

Output ~= 1*Target + -70

Output ~= 0.88*Target + 70

Validation: R=0.93697

1200 O Data
Fit

1100 7

1000

900

800

700

600

500

400 0O

400 600 800 1000 1200
Target
) All: R=0.94605 ,
O Dat

1200 e c
Y=T]

1000

800

600

400¢

©) I

400 600 800 1000 1200
Target

Figure 8: Regression, training, validation and testing plots for Shearing power

Table 6 presents the prediction of Shearing Power
using an Artificial Neural Network (ANN). The table
includes experimental data and predicted values for
Shearing Power based on three factors: Depth of Cut
(Factor 1), Cutting Speed (Factor 2), and Feed Rate
(Factor 3). For each run, the experimental values of
Shearing Power and the ANN-predicted values are
compared and the corresponding prediction error
computed. In most cases, the errors are extremely small,
like for runs 1, 2, 5, and 13, where the predicted values

are very close to the experimental values. In some cases,
larger errors are observed, like for runs 7, 8, 9, and 19,
where the predicted values are quite far from the
experimental values. The range of the accuracy of the
prediction shows that although the ANN model is mostly
correct, there could be experimental conditions where the
prediction error could be larger, which can indicate where
the refinement or the fine-tuning could be done in the
model.
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Table 6: Prediction of Shearing power using ANN

Factor 1 Factor2 Factor3 Shearing power
RuN A:Depth  B:Cutting C:Feed

of cut Speed Rate Experiment ANN Error

mm m/min mm/rev
1 0.63 225 0.17 532.7 531.19 151
2 0.63 225 0.17 599.33 601.19 -1.86
3 0.63 225 0.17 532.7 531.19 151
4 0.63 225 0.17 695.33 654.19 41.14
5 0.25 300 0.25 1216.2 1214.02 2.18
6 0.63 225 0.17 695.33 691.19 4.14
7 0.63 225 0.17 532.7 601.19 -68.49
8 0.25 150 0.1 521 574.46 -53.46
9 0.63 351.13 0.17 908.6 818.12 90.48
10 1 300 0.25 403.05 354.36 48.69
11 0.63 98.87 0.17 589 576.31 12.69
12 0.01 225 0.17 695.33 694.43 0.9
13 1 300 0.1 724.8 724.78 0.02
14 0.63 225 0.3 695.33 693.32 2.01
15 1 150 0.25 620.48 598.78 21.7
16 1 150 0.1 1129 1130.71 -1.71
17 0.63 225 0.05 1216.2 1216.91 -0.71
18 0.25 150 0.25 332 388 -56
19 1.26 225 0.17 488 573.5 -85.5
20 0.25 300 0.1 1321 1256.12 64.88

3.3 Comparative Analysis of RSM and ANN Models

Table 7 provides RSM and ANN model predictions of
shearing power and experimental measurements. The
table provides the input factors (Depth of cut, Cutting
Speed, and Feed Rate) for each run, experimental values
of shearing power, and RSM and ANN predictions.
Experimental values of shearing power differ based on
the input factors' combinations. The RSM and ANN

models also predict values close to the experiment but
with variations. The ANN model predicts more closely, as
can be seen from its values compared to the RSM model,
where variations with experiment are higher. This signifies
that the ANN model better learns the highly nonlinear
relationships between the machining parameters and
shearing power compared to the RSM model.
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Table 7: RSM vs ANN Prediction for Shearing power

Run A:Depth B:Cutting C:Feed .

of cut Speed Rate Experiment RSM ANN

Mm m/min mm/rev
1 0.63 225 0.17 532.7 597.62  531.19
2 0.63 225 0.17 599.33 597.62  601.19
3 0.63 225 0.17 532.7 597.62  531.19
4 0.63 225 0.17 695.33 597.62  654.19
5 0.25 300 0.25 1216.2 1207.72 1214.02
6 0.63 225 0.17 695.33 597.62  691.19
7 0.63 225 0.17 532.7 597.62  601.19
8 0.25 150 0.1 521 550.31 574.46
9 0.63 351.13 0.17 908.6 945.97  818.12
10 1 300 0.25 403.05 366.34  354.36
11 0.63 98.87 0.17 589 564.03 576.31
12 0.01 225 0.17 695.33 699.1 694.43
13 1 300 0.1 724.8 723.97 724.78
14 0.63 225 0.3 695.33 716.43  693.32
15 1 150 0.25 620.48 634.23  598.78
16 1 150 0.1 1129 1130.83 1130.71
17 0.63 225 0.05 1216.2 1207.7 1216.91
18 0.25 150 0.25 332 321.99 388
19 1.26 225 0.17 488 496.7 573.5
20 0.25 300 0.1 1321 1297.06 1256.12

Figure 9 plots the experimental results and ANN model closely mimics the fluctuations in the actual

predictions of the RSM and ANN models for the 20
experimental runs. The figure shows the experimental
values of the shearing power and the corresponding RSM
and ANN model predictions. While the two models
capture the general trend in the experimental data, the

shearing power, proving its better ability in capturing the
nonlinearities and complexities of the process. The RSM
is, however, observed to make a more linear prediction
that does not capture all the fluctuations in the
experimental data, proving the better fit of the ANN model.
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Time Series Plot of Experiment, RSM, ANN
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Figure 9: Time Series Plot of Experiment, RSM, ANN for Shearing power

The regression equation 3 indicates that there is a
perfect linear relationship between the experimental
shearing power values and those predicted by the RSM
model. The coefficient of 1.000 suggests that for every
unit change in the RSM prediction, the experimental value
changes by an equal amount. The term "- 0.00" implies
that there is no significant offset between the
experimental and predicted values, indicating that the
RSM model accurately predicts the shearing power with
minimal error. This perfect linearity further suggests a
high degree of correlation and an effective RSM model in
this case.

Experiment = - 0.00 + 1.000 RSM

Table 8 presents the RSM Model Summary for
Shearing power, where the standard deviation (S) is
45.6519, and the R-squared (R-sq) value is 97.58%, with

an adjusted R-squared (R-sg(adj)) of 97.45%. This
indicates that the RSM model explains approximately
97.58% of the variability in shearing power, with only a
small reduction in explanatory power when adjusted for
the number of predictors. Furthermore, Table 9 shows the
RSM Analysis of Variance (ANOVA) for Shearing power,
with a regression sum of squares (SS) of 1,512,606 and
a mean square (MS) of 1,512,606. The corresponding F-
value of 725.79 and a p-value of 0.000 indicate that the
regression model is statistically significant, meaning that
the model effectively captures the relationship between
the input variables and the shearing power. The error sum
of squares (SS) of 37,514 and the associated mean
square (MS) of 2,084 suggest that the residuals (or error)
are relatively small compared to the regression sum,
reinforcing the model's predictive accuracy.

Table 8: RSM Model Summary for Shearing power

S R-sq

R-sq(adj)

45.6519 97.58% 97.45%

Table 9: RSM Analysis of Variance for Shearing power

MS F P

Regression 1 1512606 1512606 725.79 0.000

Source DF SS
Error 18 37514
Total 19 1550119

2084
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Shearing power regression equation, as provided in
Equation 4, shows the agreement of experimental
shearing power values with the ANN model predictions.
The equation suggests that one would obtain a rise in the
experimental shearing power by approximately 1.047
units with an intercept of -32.74 when there is a one unit
rise in the ANN-predicted value. The regression suggests
that the ANN model is extremely close to the experimental
data with a slightly higher sensitivity (1.047) than the
perfect 1:1 relationship. The negative intercept suggests
that, when the predicted shearing power is zero, the
experimental value would deviate by -32.74 units,
highlighting the model’s accuracy and the close match
between the predicted and experimental results.
Experiment = - 32.74 + 1.047 ANN

4
In Table 10, the ANN Model Summary for Shearing

power shows that the ANN model has a high coefficient
of determination (R-squared) of 97.93%, and the adjusted
R-squared value is 97.82%. These values indicate that
the ANN model explains nearly 98% of the variance in the
experimental shearing power data, suggesting that it is a
highly effective model for predicting the shearing power.
While in Table 11, the ANN Analysis of Variance
(ANOVA) for Shearing power reveals that the regression
model is statistically significant, with a very high F-value
of 853.20 and a p-value of 0.000. This indicates that the
ANN model provides a significantly better fit to the data
compared to the error (residuals). The regression
explains the majority of the variance in the data, as
indicated by the very low error sum of squares (SS =
32,027) relative to the regression sum of squares (SS =
1,518,092). These results underscore the effectiveness of
the ANN model in accurately predicting shearing power.

Table 10: ANN Model Summary for Shearing power

S R-sq R-sq(adj)
42.1816 97.93% 97.82%

Table 11: ANN Analysis of Variance for Shearing power

Source DF SS MS F P
Regression 1 1518092 1518092 853.20 0.000
Error 18 32027 1779

Total 19 1550119

4. CONCLUSION

This study presents a comprehensive assessment of
the effectiveness of Response Surface Methodology
(RSM) and Artificial Neural Networks (ANN) in optimizing
machining processes, specifically for predicting shearing
power. Both approaches demonstrated the ability to
forecast machining outcomes based on key parameters
(depth of cut, cutting speed, and feed rate). However,
clear differences emerged between the two, particularly
when dealing with complex or non-linear patterns in the
data. The RSM model, with its relatively simple and
interpretable structure, delivered reliable predictions
under conditions where the relationships among variables
were predominantly linear. In such cases, it offered
reasonable approximations of machining responses. The
RSM model showed strong results in the prediction of
shearing power, due mainly to the input parameters
connected with the output in a fairly simple way. Since
RSM relies upon linear assumptions, its benefit also
suggests a problem it often faces with more detailed
connections among input variables.

RSM and ANN both offer methods valuable for
optimization and prediction in machining processes.
However, the results from this study clearly indicate the
ANN model's accuracy. Adaptability is superior also in the

ANN model in comparison to RSM. Due to the fact that it
is able to capture complex and nonlinear relationships
between machining parameters, it generates predictions.
The predictions are more precise over a broad range of
conditions. ANN suits applications well because they
need optimization that is accurate and flexible. The ANN
model identifies optimal process settings to machine more
efficiently, and it operates at lower costs while relying less
on trial-and-error methods. ANN thus offers a stronger as
well as dependable predictive tool to aid future research
including practical implementation for machining
optimization.
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