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Soil moisture constitutes an important contribution to the knowledge of a part of the water balance at 
the global, regional, and local scales. Hence, this information is widely used in hydrological 
applications helping to quantify the diverse components of the water balance – infiltration, surface 
runoff, evaporation, deep percolation, and changes in water content. Remote sensing provides 
researchers and the community with the possibility to monitor changes in land and ocean around the 
globe, especially where in-situ observations are limited or non-existent. Microwave remote sensing 
enables satellite to get observations day and night regardless of the lighting conditions, and at 
selected frequencies, microwave emissions have a good cloud penetration which proves to be an 
immensely advantage over the oceans, which are on average 70% covered by clouds. We can mention 
the recent success: 2009: ASCAT soil moisture product available in NRT, 2010: First Soil Moisture 
Network (ISMN) takes off 2011: International first merged multi-radiometer soil moisture product, 
2012: First ECV soil moisture data set covering 1978-2010 released, 2013: Launch of Sentinel-1. 
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INTRODUCTION 
 
Soil moisture is most often described as the water in the 
root zone that can interact with the atmosphere through 
evapotranspiration and precipitation. Because soil 
moisture links the hydrologic cycle and the energy 
budget of land surfaces by regulating latent heat fluxes, 
accurate assessment of the spatial and temporal 
variation of soil moisture is important for the study, 
understanding, and management of surface 
biogeophysical processes. Given the crucial role of soil 
moisture in land surface processes, it should be 
monitored with the same accuracy and frequency as 
other important environmental variables. However, 
because in situ soil moisture measurements are 
generally expensive and often problematic, no large-
area soil moisture networks exist to measure soil 
moisture at the high frequency, multiple depths, and fine 
spatial resolution that is required for various applications. 
Remote sensing of soil moisture is limited by errors 
introduced by soil type, landscape roughness, vegetation 
cover, and inadequate coverage in both space and time. 
Alternatively, many reliable hydrologic models are 
available for calculating soil moisture, but these are 
prone to error in both structure and parameterization. It 
has been suggested (Wei, 2005) that the best, 
operational soil moisture estimates might be obtained 
through a synthesis between remote-sensing data and 

hydrologic modeling. Remote-sensing data, when 
combined with numerical simulation and other data, 
should provide estimates of soil moisture with higher 
spatial and temporal resolution and less error than either 
remotely sensed data or model simulations separately. 
 
 
Recent successes and prospects 
 
• 2002: First global soil moisture data set from ERS 
SCAT published 
• 2003: NASA soil moisture product based on AMSR-E 
put into operations 
• 2007: SMOS soil moisture data released 
• 2009: ASCAT soil moisture product available in NRT 
• 2010: First Soil Moisture Network (ISMN) takes off 
• 2011: International first merged multi-radiometer soil 
moisture product 
• 2012: First ECV soil moisture data set covering 1978-
2010 released 
• 2013: Launch of Sentinel-1 
– First operational soil moisture product at ≤ 1 km spatial 
resolution 
Prospects 
• 2014: Lauch of SMAP 
– First active/passive sensor at L-band 
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Soil moisture constitutes an important contribution to the 
knowledge of a part of the water balance at the global, 
regional, and local scales. Hence, this information is 
widely used in hydrological applications helping to 
quantify the diverse components of the water balance – 
infiltration, surface runoff, evaporation, deep percolation, 
and changes in water content (Davenport et al., 2005). 
The groundwater storage may have a direct impact on 
human health, and can influence agriculture activities, 
economy, military activities and transportation. 
Therefore, information about the topsoil layer is 
important to monitor crop conditions, and information 
about the moisture in deeper soil is crucial for 
agricultural planning and management of water 
resources. Additionally, low levels of soil wetness can 
lead to drought or wild land fire, whereas saturated soil 
together with precipitation may increase the risk of 
flooding. The knowledge of soil moisture is also of 
extreme importance in weather and climate forecasting. 

Considering that the atmosphere has millions of 
degrees of freedom, weather forecasts have a limit of 
deterministic predictability of around 14 days. Therefore, 
weather prediction is considered an initial value problem 
and numerical weather prediction (NWP) models require 
accurate data about the transfer of soil moisture, energy 
fluxes in the boundary layer, evaporation and the 
partitioning of sensible heat flux and latent heat flux to 
accurately predict the wind circulation and cloud 
development. Furthermore an evaporation rate that 
varies strongly and consistently with soil moisture tends 
to lead to a higher coupling strength between 
atmospheres and surface (Guo et al., 2006). Specific 
knowledge of surface wetness patterns on a regional 
scale can additionally aid in the forecast of thunderstorm 
location, maximum and minimum temperatures and 
identify restricted visibility related with haze, smog and 
fog. Models of ecosystem and carbon cycle processes 
require soil moisture because it regulates both soil 
respiration and plant water stress, which affects stomata 
conductance and carbon uptake. There are also benefits 
for the modulation of dust generation and trace gas 
fluxes from earth’s surface. For military defense, too, soil 
moisture affects everything from low level fog forecasts 
to the calculation of density altitude, or lift capacity of 
aircraft1. Satellite remote sensing of soil moisture is a 
key factor to understand land-atmosphere coupling. 
Large-scale observational products using microwave 
radiometry are an effective method of monitoring soil 
moisture heterogeneity (Gao et al., 2004).  
 
 
Microwave remote sensing of soil moisture 
 
Remote sensing provides researchers and the 
community with the possibility to monitor changes in land 
and ocean around the globe, especially where in-situ 
observations are limited or non-existent. Microwave  re- 
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mote sensing enables satellite to get observations day 
and night regardless of the lighting conditions, and at 
selected frequencies, microwave emissions have a good 
cloud penetration which proves to be an immensely 
advantage over the oceans, which are on average 70% 
covered by clouds. Microwave sensors are used for 
retrieval of soil moisture because they are insensitive to 
vegetation. The two main properties of microwave 
radiation are polarization and frequency. 

Polarization varies with the wavelength and with the 
physical characteristics of the emitting or reflecting 
material, which in turn allows the discrimination between 
solid, liquid, and frozen elements on both land and 
ocean surfaces. Microwave remote sensing covers both 
active and passive forms of operation. Passive 
instruments (radiometers) sense the naturally emitted 
microwave radiation in their field of view, measuring the 
emanating electromagnetic radiation from the earth’s 
surface or physical objects. The sensors require a large 
field of view in order to detect low level of emitted 
microwave radiation. The low spatial resolution is a 
consequence of the Rayleigh criterion, which is a 
diffraction limit on the resolution of sensors based on the 
wavelength of the radiation and the size of the observing 
“aperture”. The smallest angle α that can be resolved is 
calculated as sin (α) = 1.22 x (wavelength / aperture 
diameter for circular apertures).  

Active microwave systems include imaging (radar) and 
non-imaging sensors (altimeters, scaterometers). This 
type of sensor has its own source of illumination and 
measures the difference between the power emitted and 
the power received from the target. Space borne 
microwave radiometry is an important technique for 
obtaining global estimates of parameters important to 
the hydrological cycle and land-surface energy coupling 
(surface temperature, soil moisture, vegetation). The 
need for frequent information of soil moisture at fine 
resolution scale is in fact imperative for the improvement 
on model outputs. Microwave are electromagnetic waves 
with wavelengths ranging from one meter to one 
millimeter, or equivalently, with frequencies between 0.3 
and 300 GHz. Electromagnetic waves travel at the 
speed of light c, and their frequency f and wavelength λ 
are related by c= f λ. In order to obtain an estimation of 
the soil moisture, the sensor measures the soil’s 
naturally emitted microwave radiation, and traduces that 
information into brightness temperature.  

The quality and quantity of grapevine production is 
controlled by many factors, such as soil characteristics, 
climate, management system and the frequency of 
exposure to pests and diseases. Recent studies 
(Bramley and Proffitt, 1999; Lamb and Bramley, 2001) 
show that productivity within a single vineyard could vary 
as much as eight-fold. Precision viticulture takes 
advantage of remote sensing and geomatics to model 
this variation and estimate yield quality and quantity at 
the vineyard level (Bramley, 2005). Soil particularly is an  
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important factor in determining the productivity of 
vineyards. Observations show that high and low 
production regions within a vineyard tend to be stable 
over a longer time (Bramley and Proffitt, 2000), and 
these patterns relate to soil spatial distribution, micro-
climate patterns and topography variations (Lamb, 
2000). Identifying zones with similar soil type helps in the 
planning of a vineyard, by selecting the suitable grape 
varieties to soil type and allocating vineyards with 
homogenous soil to allow easy management (Lamb et 
al., 2002). In addition, soil information explains the 
interplay between year-to-year rainfall and production. 
Therefore, “considerable effort in precision viticulture 

research aims at measuring and mapping spatial 
variability in soils at the single vineyard scale” (Hall et 
al., 2002). Remote sensing provides high quality spatial 
data for vineyard management. However, it is not 
applied widely in viticulture (Hall et al., 2002). Optical 
remote sensing is used to sense changes in properties 
of the few millimeters of the soil surface (Kaleita et al., 
2005). Alternatively, researchers apply non-contact 
electromagnetic survey to map soil variability within a 
vineyard (Bramley and Proffitt, 2000; Bramley, 2005). 
Measured apparent electric conductivity is used as a 
proxy for soil moisture content, soil texture and salinity of 
the soil solution (Lamb and Bramley, 2001; Lamb et al., 
2005). The utility of thermal remote sensing in detecting 
energy and moisture fluxes at the land surface is well 
documented (Bennett et al., 2008; Tian et al., 2011; 
Wang and Bras, 2011, 1999, 2010; Wei, 2005). For the 
purpose of monitoring soil moisture content, the common 
scheme is to decouple the surface thermal properties 
from ambient temperature (daily temperature cycle) by 
calculating the thermal inertia (TI), which is a physical 
property that characterizes the surface resistance to 
ambient temperature change (Pratt andEllyett, 1979; 
Price, 1977; Verhoef, 2004; Verstraeten et al., 2006). 
Various studies report a strong relation between soil 
moisture content and TI (Minacapilli et al., 2009 and 
2012; Verhoef, 2004). However, the thermal inertia 
method is mostly conducted over bare and dry ground, 
to avoid complexity added by variations in 
evapotranspiration patterns (Maltese et al., 2013). 
Nevertheless, recent studies (Price, 1985 and 1977) 
showed that soil moisture could be estimated over 
partially vegetated soil if a linear relation between 
ground flux and surface temperature is maintained. 
(Verhoef, 2004) calculated TI using the surface 
temperature drop, during nights with clear sky and still 
conditions, to avoid the complex surface energy 
exchange that occurs during the day. The author found a 
significant relation between TI calculated over bare soil 
and volumetric soil moisture content. However, remote 
thermal inertia techniques were not applied to vineyards. 
The previous method (Van Wijk, 1963) has a potential in 
vineyard application, because it avoids the complex 
heating and evapotranspiration during the day time. 
However, a careful test of the method is needed to  

 
 
 
 
establish the validity of this method over vegetated 
surfaces (Murray and Verhoef, (2007). In this study, we 
evaluate a technique for estimating thermal inertia using 
airborne thermal images acquired over a grass covered 
soil in a vineyard in the Niagara Region, Ontario, 
Canada. The technique is based on the drop of surface 
temperature during the night and has not been tested 
over grass covered soil. We further explore the 
functional relationships between estimated thermal 
inertia in the presence of grass sod (we will refer to it 
subsequently as TIc) and subsurface soil properties 
(moisture and mechanical resistance). Finally, we 
provide suggestions for improving soil moisture retrieval 
using the nocturnal thermal inertia method. 
 
 
Theoretical background 
 
TI [J·m−2·K−1·s−1/2] of a bare soil is a physical property 
that describes the response of soil to an ambient 
temperature change: 

TI=     
where   is the soil density [kg·m−3], c is soil specific 
heat capacity [J·kg−1·K−1] and k is soil thermal 
conductivity [W·m−1·K−1]. TI can be calculated from the 
night cooling of land surface assuming a constant rate of 
surface cooling (Van Wijk, 1963 and Verhoef, 2004): 

 
 where  [Wm−2] is the average net radiation 
during the night, ΔT [K] is the night temperature drop 
and Δt [s] is the cooling period in seconds. The common 
method for calculating thermal inertia depends on the 
periodic daily heating; in contrast, Equation (2) depends 
on the non-periodic cooling of the surface under still and 
clear sky conditions. Theoretically, if one estimated 
thermal inertia over the same area using both methods, 
the results should be similar. However, the absence of 
turbulent heat fluxes (i.e., sensible heat flux and latent 
heat) during the night simplify the relation between 
surface temperature and ground heat flux, which cannot 
be guaranteed during the day (Pratt et al., 1980 and 
Murray and Verhoef, 2007) proposed that increasing soil 
saturation will result in a logistic increase of TI. The 
authors based their theoretical relation on a model of 
thermal conductivity as a function of soil saturation by 
Johansen (Johansen, 1975): 

 
where the subscripts, s and d, denote the saturated and 
air-dry conditions, respectively, and Ke is a modified 
Kersten number, given by: 

 
where γ is a soil texture-dependent parameter, δ is a 
shape parameter and θ/θs [-] is the soil saturation ratio. 
Estimating soil moisture content can be done by invert- 
 



 
 
 
 
ing Equation (3) with the Kersten number, approximated 
by (Minacapilli et al., 2012): 

 
The brightness temperature, measured using a 

thermal infrared sensor over a grass-covered soil, is 
modeled as the summation of (a) the energy of the soil 
surface emission, which passes through the plant 
canopy, (b) the energy of the plant canopy emission and 
(c) the reflected energy of plant canopy emission by the 
soil surface below it, which passes through the canopy 
(Mo et al., 1982): 

 
where Tb [k] is the brightness temperature measured by 
the thermal infrared (TIR) sensor, Ts [K] is soil surface 
temperature, Tc [K] is the plant canopy temperature, ε [-] 
is soil surface emissivity, ω [-] isthe single scattering 
albedo and ζ [-] is the transmissivity of the vegetation 
canopy. The grass canopy (leaves) temperature differs 
from ambient air temperature by the net radiation at both 
the surface of the leaf and by the temperature diffusive 
resistance, which is a function of leaf size and wind 
speed (Oke 1988). The amount of heat storage, due to 
photosynthesis, is negligible over a day period. If remote 
sensing measurements are taken on a still clear night 
over a grass-covered soil, it can be assumed that the 
grass temperature is coupled to the ambient 
temperature. This will result in a linear reduction of the 
soil surface temperature, as determined by the 
transmissivity of the grass canopy and the sensor 
viewing angle (Equation (6). Therefore, we postulate that 
using Equation (2) and surface temperature measured 
over a grass covered soil will result in an estimated TIc, 
which is proportional to the true TI of the soil below the 
grass. Although Equation (2) has not been applied to a 
grass-covered surface before, a previous field study by 
Kim and England reports a significant relation between 
TI calculated using passive microwave and soil moisture 
content over a grass covered area. There is a clear 
trade-off between using a complex data assimilation 
technique and the ability to use all the available data due 
to the large computational burdens of performing data 
assimilation at fine resolutions using dense data sets. 
On the basis of this study, it was found that, as the 
complexity of the data assimilation model increases, the 
size of the assimilated data set needs to decrease in 
order to maintain computational feasibility. Complex 
methods have the ability to extract more useful 
information from assimilated data, but simpler methods 
use more of the data to extract similar information. This 
trade-off allows simpler assimilation techniques to 
perform almost as well as complex techniques. In 
general, this argument suggests the use of assimilation 
methods that are of moderate complexity, are sound and 
computationally efficient, but use as much data as 
possible. If the information in the data can be efficiently 
compressed or filtered before its use in data  
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assimilation, it may be more reasonable to use larger 
data sets in complex data assimilation strategies. 
Because hydrologic data assimilation requires hydrologic 
modeling predictions, it is limited by a similar trade-off 
between fine resolution and large area implementation. 
A statistically based assimilation may be a viable 
approach for use in large areas, but ultimately the trade-
off between resolution and area will be determined by 
the application. Several supplementary observations are 
essential for implementation of soil moisture data 
assimilation, the most important being meteorological 
forcing. Forcing averaged over large areas may be 
adequate, but detailed spatial patterns of precipitation 
are essential. Clearly, regular, remotely sensed soil 
moisture observations are required, but these must be 
supplemented by in situ surface and root zone 
observations across the operational domain to specify 
error correlations, to calibrate parameters, and to 
validate the model-calculated fields. Observations of soil 
and vegetation characteristics are likely needed for 
optimal model performance, while observations of 
surface water and energy fluxes are valuable for 
validating simulation results. 
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